

¹School of Psychological and Cognitive Sciences, Peking University. ²PKU-IDG/McGovern Institute for Brain Research, Peking University. ³Peking-Tsinghua Center for Life Sciences, Peking University. ⁴Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences.

at the next moment.

uncertainty?

per group), or ten groups (4 SOAs per group).

A decision-theoretic model of the temporal dynamics of visual priming

Hang Zhang^{1,2,3}, Yan Huang⁴ & Huan Luo^{1,2}

Temporal uncertainty

References

Huang, Y., Chen, L., & Luo, H. (2015). Behavioral Oscillation in Priming: Competing Perceptual Predictions Conveyed in Alternating Theta-Band Rhythms. Journal of Neuroscience, 35(6), 2830-2837.

Maloney, L. T., & Zhang, H. (2010). Decision-theoretic models of visual perception and action. Vision Research, 50(23), 2362-2374.

We modeled the slow trend of reaction times ((C+IC)/2) from the decision-theoretic perspective (Maloney & Zhang, 2010).

Modeling

Conclusion:

The decision-theoretic model of reaction time (temporal discounting model) can explain the non-additive effects of SOA and temporal uncertainty.

A full model that explains the C-IC difference and oscillation coming soon...