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a b s t r a c t

Statistical decision theory (SDT) and Bayesian decision theory (BDT) are closely related mathematical
frameworks used to model ideal performance in a wide range of visual and motor tasks. Their elements
(gain function, likelihood, prior) are readily interpretable in terms of information available to the obser-
ver. We briefly describe SDT and BDT and then review recent work employing them as models of biolog-
ical perception or action. We emphasize work that employs gain functions and priors as independent or
dependent variables.

At one extreme, Bayesian decision theory allows the experimenter to compute ideal performance in
specific tasks and compare human performance to ideal (Geisler, 1989). No claim is made that visual pro-
cessing is in any sense ‘‘Bayesian”. At the other extreme, researchers have proposed Bayesian decision
theory as a process model of ‘‘perception as Bayesian inference” (Knill & Richards, 1996). We end by dis-
cussing how possible ideal models are related to imperfect, actual observers and how the ‘‘Bayesian
hypothesis” can be tested experimentally.

� 2010 Published by Elsevier Ltd.
1. Introduction

Statistical decision theory (SDT) emerged with the publication
of Blackwell & Girshick’s Theory of Games and Statistical Decisions
in 1954. An immediate stimulus to its development was the Theory
of Games and Economic Behavior by von Neumann and Morgenstern
(1944/1953) and, like game theory, SDT is normative: it is a math-
ematical method for selecting optimal actions under conditions of
uncertainty. On each of a series of turns in SDT a player gains
instantaneous information about an uncertain environment and
then selects an action. The choice of action determines whether
the player merits reward or incurs punishment.

Bayesian decision theory (BDT) is a special case of SDT. Both meth-
ods are widely employed in mathematical statistics (Berger, 1985;
Ferguson, 1967; Gelman, Carlin, Stern, & Rubin, 2003; Jaynes, 2003;
O’Hagan, 1994) and pattern classification (Duda, Hart, & Stork,
2000). In recent years, BDT has been more and more frequently used
in developing models of biological perception and action (Knill &
Richards, 1996; Maloney, 2002; Mamassian, Landy, & Maloney,
2002; Yuille & Bülthoff, 1996), in part because its mathematical
structure resembles the ordinary ‘‘perceptual cycle” (Neisser, 1976).

SDT comprises a ‘mathematical toolbox’ of techniques, and any-
one using it to model decision making in biological vision must, of
Elsevier Ltd.
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course, decide how to assemble the elements into a biologically-
pertinent model. In the following we will first describe the ele-
ments of SDT/BDT, then review selected recent work emphasizing
these methods, and last discuss the implications of using SDT/BDT
as a model of biological perception and action. Earlier reviews in-
clude Knill and Richards (1996), Maloney (2002), Mamassian,
Landy & Maloney (2002), and Körding (2007).
2. The elements of SDT

The elements of SDT consist of just three sets and three func-
tions. The three sets are W, the states of the world, X, the possible
sensory states, and A, possible actions (Fig. 1A). On every ‘‘turn”,
the world is in some specific state, w 2W, unknown to the obser-
ver. The observer is given access to a sensory state X 2 X,1 and must
decide what action, a 2 A to select. The interpretation of these ele-
ments is very flexible. The state of the world may be the distance
to a specific object or the intrinsic color of a surface. Actions could
include estimates of depth, a motor program specified as a pattern
of neural activity over time, or a decision between fight and flight.
Signal detection theory (Green & Swets, 1966/1974) is an application
1 We use upper-case X to denote the particular sensory state available to the
observer on a specific occasion and lower-case x to denote sensory states is general,
the latter analogous to ‘‘the people you know”, the former to ‘‘your good friend
Dennis” who just walked into your office.
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Fig. 1. (A) The elements of statistical decision theory. The three vertices correspond to W, the possible states of the world, X, the possible sensory states, and A, the available
actions. The three edges correspond to the gain function, G(a, w) the likelihood function, f(x|w) and the decision rule, d(x) where x 2 X denotes a sensory state, a 2 A, a particular
action and w 2W, a particular state of the world. (B) Equal variance Gaussian signal detection theory. The distribution of the sensory state X depends on the state of the world.
The two possible world states are S (‘‘signal present”) and �S (‘‘signal absent”) and the distributions are Gaussian with equal variance but differing in mean by d

0
(Green &

Swets, 1966/1974).
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of SDT that nicely captures all the key ideas and we will use a partic-
ular signal detection example to illustrate the key ideas of SDT (and,
later, BDT) as we introduce them.

The states of the world in signal detection theory are just ‘‘sig-
nal present” and ‘‘signal absent” denoted as W ¼ fS; �Sg, the sensory
states are any real magnitude that we refer to as the strength of the
signal x 2 X ¼ R and the possible actions are simply to say ‘‘signal
present” or ‘‘signal absent”, denoted as A ¼ fs;�sg.

There are three functions that serve to complete the description
of SDT (Fig. 1A). The first is the likelihood function f(x|w), the prob-
ability density of sensory states contingent on the state of the
world which, as written, links the sensory information to the state
of the world.2 Remarkably, it can be shown that the likelihood func-
tion captures all of the sensory information relevant to estimating
the state of the world (Berger & Wolpert, 1988; Maloney, 2002), a
result known as the Likelihood Principle.

In Fig. 1B we plot the two possible likelihood functions of
Gaussian equal variance signal detection theory, one for the world
state S (‘‘signal present”) and one for the world state �S (‘‘signal
absent”). These are the probability density functions that X may
have, depending on the state of the world
2 The likelihood function is often written as L(w|x) = f(x|w) to emphasize that it
provides information about possible states of the world given a known sensory state
x. We will, however, continue to use f(x|w).
f ðxj�SÞ ¼ 1ffiffiffiffiffiffiffi
2p
p e�

x2
2

f ðxjSÞ ¼ 1ffiffiffiffiffiffiffi
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x�d0ð Þ2
2

ð1Þ

where d0 is the mean of the distribution when the signal is present.
One possible value of X is marked on Fig. 1B and, while it could have
arisen from either distribution, it seems intuitively plausible that it
arose from the world state ‘‘signal present”.

The second function is the gain function G(a, w) that determines
the gain or loss experienced by the observer on a particular trial. It
is also referred to as loss function or value function in the literature.
Losses are just negative gains and vice versa. A possible gain func-
tion for the simple signal detection theory model we consider is
tabulated in an inset to Fig. 1B. With this gain function, the signal
detection theory observer gains one unit if she correctly names the
state of the world and otherwise receives nothing.

The third function is the decision function a = d(x) that captures
the strategy of any particular SDT observer. The decision function
maps the sensory state (the only novel information available on
a particular trial) to an action. This modest function is intended
to model all of perceptual and cognitive processing. In signal detec-
tion theory, the choice of a rule d(x) applied to the signal strength X
completely specifies the signal detection observer.

We will add one more function, the prior distribution of states
of the world, below and, once we do so, SDT will transmute into



3 A set of items is a complete order if the ordering is complete (every item is either
reater than, less than, or equal to, every other item) and the ordering is transitive (if
> b and b > c then a > c). A partial order is transitive but need not be complete. That
, some pairs of items may not be ordered.
4 SDT and BDT are typically presented with gain functions replaced by loss
nctions, a cosmetic change if we think of gains as just negative losses and vices

ersa. Then a minimax rule minimizes the maximum loss and the origin of the term
inimax is evident. We retain the term ‘‘minimax” even though we work with gain
nctions.
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BDT, a special case of SDT where the observer has access to the
prior distribution of states of the world. For now though, we will
consider what we can say about different choices of decision func-
tions in SDT without a prior. One reason to do so is to develop a
better understanding of SDT. A second reason is to examine what
we can say about different decision rules even when the prior dis-
tribution is not known.

We characterize any decision rule d(x) by evaluating its ex-
pected gain in each world state

EG½djw� ¼
Z 1

�1
GðdðxÞ;wÞf ðxjwÞdx ð2Þ

The equation is readily interpreted: the state of the world deter-
mines the probability density that each possible sensory state can
occur through the likelihood function f(x|w); the decision function
maps the sensory state to an action a = d(x), and the observer re-
ceives the gain G(a, w), weighted by the likelihood summed across
all possible sensory events. In the signal detection theory example,
with the gain function shown in Fig. 1B, Eq. (2) can be written as

EG½djS� ¼
Z 1

�1
GðdðxÞ; SÞf ðxjSÞdx ¼ p½dðXÞ ¼ S�

EG½dj�S� ¼
Z 1

�1
GðdðxÞ; �SÞf ðxj�SÞdx ¼ p½dðXÞ ¼ �S�

ð3Þ

and, in the ordinary terminology of signal detection theory, the two
rightmost probabilities are the probability of a ‘‘hit” (correctly iden-
tifying the signal when present) and the probability of a ‘‘correct
rejection” (correctly identifying the signal when absent) denoted
p[Hit] and p[CR], respectively. We can summarize any decision rule
by EG[d|w] and, for the signal detection theory example, we can plot
this summary as a plot of EG[d|S] versus EG½dj�S�. That is, we plot p[Hit]
versus p[CR]. The range of expected gain on both axes in this case is 0–
1 and gain is synonymous with probability correct. We refer to the
resulting plot as a gains plot and the point plotted for each decision
rule as the gains plot for that rule. For any rule d(X) we can compute
its gains plot but we cannot guarantee that every point on the gains
plot has a rule. We plot some examples of gains plots for decision
rules as shown in Fig. 2A. The exact location of the gains plot for each
rule depends on the likelihood functions in Fig. 1B through Eq. (3).

The rule d1(x) always chooses the action s, the rule d2(x) always
chooses the action �s, the rule d3(x) chooses the action s precisely
when X > 0.5, and the rule d4(x) chooses the action s precisely when
X 6 0.5. The third rule is intuitively appealing. If the sensory state
is greater than the point where the two distributions cross in
Fig. 1B, we choose s and otherwise �s. If, however, the world state
is certain to be s, then d1 will always earn the maximum possible
gain. The rule d4 in contrast, seems perverse, inferior to the others.
As we shall see below, it is.

Given any two rules, say d2 and d3, we can mix them probabilis-
tically by deciding to use d2 with probability q and otherwise d3. We
denote the resulting mixture rule as d5(x). The expected gain for
d5(x) mixture rule in world state S is easy to compute. With proba-
bility q we execute rule d2(x) with expected gain EG[d2|S] and other-
wise (with probability 1 � q) we execute rule d3(x) with expected
gain EG[d3|S]. The overall expected gain for the world state S is just

EG½d5jS� ¼ qEG½d2jS� þ ð1� qÞEG½d3jS� ð4Þ

We can similarly compute

EG½d5j�S� ¼ qEG½d2j�S� þ ð1� qÞEG½d3j�S� ð5Þ

The gains plot of the mixture rule d5 corresponds to a point in
Fig. 2A plotted that is on the line joining the points for d2 and d3.
Its displacement from d3 along the line is proportional to q. The
point for d5 is plotted on Fig. 2 under the assumption q = 0.25.

The shaded region in Fig. 2A contains the plots of P[Hit] vs.
P[CR], for all possible rules d(x) including mixture rules. The top-
right edge of this region, marked by a heavy blue curve, is the re-
ceiver operating characteristic curve (ROC curve) of signal detec-
tion theory (Green & Swets, 1966/1974) slightly disguised as we
have plotted P[CR] on the horizontal axis rather than the more
familiar probability of a ‘‘false alarm”. A false alarm occurs when
the decision rule selects s (‘‘signal present”) when the world state
is �S (‘‘signal absent”), and P[FA] = 1 � P[CR]. If we switched to P[FA]
we would ‘‘flip” the plot left to right, restoring the form of the ROC
curve that is likely familiar to the reader. In the form we employ,
gain increases as we go to the right or up. The unmarked bot-
tom-left side of the region is a sort of anti-ROC curve. If you take
any rule on the ROC curve and simply respond s when the rule dic-
tates �s and vices versa, you get a rule whose gains plot is on the
anti-ROC curve. The rule d4 is the ‘‘anti-rule” to d3 and vice versa.
An observer can only do very badly in a signal detection task if
he has the capability to do very well.

2.1. Dominance and admissibility

The decision rule d3 always has a higher expected gain EG[d3|w]
than decision rule d4 for all states of the world. Consequently,
employing d3 rather than d4 always leads to a higher expected gain.
We say that one decision rule da dominates another db precisely when

EG½dajw�P EG½dbjw� ð6Þ

for all w 2W and, for at least one choice of w, the inequality is strict.
In Fig. 2B we illustrate dominance graphically. All the rules whose
plotted expected gains fall into the rectangular area are dominated
by the rule whose gains plot falls at the top-right vertex of the rect-
angle. A decision rule d that is dominated by another rule is inad-
missible. A decision rule that is not dominated by any other rule is
admissible. The admissible rules in Fig. 2A are precisely those that
fall on the top-right frontier marked by a heavy blue curve, the
ROC curve. The rules d1, d2, d3 are admissible, d4 is not and d5 is
not. In the signal detection example, any mixture of two rules with
0 < q < 1 such as d5 is inadmissible.

2.2. Minimax criterion

Dominance imposes a partial ordering3 on the decision rules. If
one decision rule dominates another then the former offers higher ex-
pected gain without further consideration of the state of the world. But
any admissible rule neither dominates, nor is dominated by, any other
admissible rule. We have no obvious way to choose among the rules
whose gain plots fall on the heavy blue curve in Fig. 2A. The minimax
criterion allows us to select a rule that gives the ‘‘best worst case”.
We score each rule by identifying the worst it can do, its minimum
gain. For example, the minimum gain for decision rule d1 (always
say ‘‘signal present”) is, of course, 0 when the signal is absent, world
state �S. A minimax rule (there may be more than one) has the ‘‘best
worst case”, that is the ‘‘maximum minimum gain”.4 The rule d3 is a
minimax rule, an outcome that is not completely surprising when
we consider that: (i) it is admissible and (ii) the gains and loss for cor-
rect and incorrect responses are identical in the two world states.

The minimax criterion makes no use about any information that
we might have about the relative probability of states of the world
and Savage (1954) criticizes it and its ‘‘worst case” emphasis as
g
a
is

fu
v
m
fu



Fig. 2. (A) A gains plot. The expected gain in each possible world state for a decision rule is plotted for the signal detection example. The points corresponding to five rules are
marked. See text. (B) Dominance. Decision rule da dominates any rule whose gains plot falls in the rectangular region, in particular, decision rule db. (C) Equivalent Bayes rules.
The vector specifies a prior [1 � p, p]

0
on the two states of the world. The points along any red dashed line have the same Bayes gain. Bayes gain increases as the red dashed

line moves to the right and the point labeled Bayes rule corresponds to the decision rule d with maximum Bayes gain. (D) The effect of the gain function. Changing the gain
function transforms either or both axes by linear transformations. The gain associated with correctly classifying the signal as present has been reduced and the expected gain
when the signal is present has by scale by a factor of 0.5, compressing the vertical axis. The prior vector is unchanged but the Bayes rule is different. See text.
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unduly pessimistic. Bayesian decision theory in contrast allows us
to make use of information about the probabilities of occurrence of
states of the world embodied in a prior.

2.3. Priors

The prior p(w) is just a probability distribution on the possible
states of the world, W. Once we have a prior we can compute the
Bayes gain for each rule

BGðdÞ ¼
Z 1

�1
EG½djw�pðwÞdw ð7Þ

The Bayes gain assigns a single number to each possible rule d
and consequently we can order all rules by their Bayes gain. If
there is a rule5 that has a greater Bayes gain than any other it is re-
ferred to as a Bayes rule (there may be more than one). In BDT we
choose a Bayes rule over any rule that is not a Bayes rule.

For the signal detection example, the prior is just the probability
that a signal will be present or absent and we can specify it as a 2-
vector [1 � p, p]0 where p = p(S). The Bayes gain is just a discrete
form of Eq. (7)
5 There does not have to be a Bayes rule if there are infinitely many decision rules
and their Bayes gains have no upper bound. Even if they have an upper bound, there
may be no decision rule whose Bayes gain matches the upper bound, just as there is
no largest negative number though all are bounded above by 0. In the former case we
can find decision rules whose expected gains are as large as we like, in the latter we
can find decision ruleswhose expected gain is as close to the upper bound as we like
.
BGðdÞ ¼ pEG½djS� þ ð1� pÞEG½dj�S� ð8Þ

which we can rewrite in vector form as

BGðdÞ ¼ ½EG½dj�S�; EG½djS��
1� p

p

� �
ð9Þ

the inner product of a gains vector and a prior vector. Consider all
the rules that share the same Bayes gain

B ¼ ½EG½dj�S�; EG½djS��
1� p

p

� �
ð10Þ

where B is a constant. Eq. (10) is the equation of a straight line that
is perpendicular to the line containing the vector [1 � p, p]

0
.This

observation gives us a graphical method to identify decision rules
that have the same Bayes gain. We draw the prior vector [1 � p, p]

0

on the gains plot (dashed arrow in Fig. 2C) and then draw lines
orthogonal to a line containing the vector (red dashed lines in
Fig. 2C). From Eq. (10) we see that points on a single red dashed line
have the same Bayes gain (Eq. (10)) and this equivalent Bayes gain
increases as the red dashed line moves up or to the right. The point
where the red line just touches the convex set of possible gains cor-
responds to the Bayes rule, the rule that maximize Bayes gain. The
rule d1 is a Bayes rule if the prior is [0, 1]

0
. That is, if S occurs with

probability 1 and �S never occur, then the rule d1 (always respond
s) has the highest possible Bayes gain. Similarly, the rule d2 is a
Bayes rule if the prior is [1, 0]

0
. The rule d3 is a Bayes rule if the prior

is [0.5, 0.5]0 With a bit of geometric reasoning we see that, in this
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simple case, any admissible rule is a Bayes rule for some choice of
prior and any Bayes rule is admissible. See Maloney (2002) for dis-
cussions on more complex BDT models and the mathematical con-
clusions we can draw from them.
2.4. Ordering the rules

The literature concerning Bayesian approaches to biological vi-
sion is almost entirely concerned with Bayes rules, rules that have
the maximum possible Bayes gain. If we think of an organism as
embodying a decision rule then it is appealing to think of the Bayes
rule for a given prior as specifying the maximum expected gain
possible for any organism when that prior is correct. However,
the Bayes criterion can also be used to order rules (organisms) that
are distinctly sub-optimal. All of the decision rules sharing a single
dashed red line in Fig. 2C have the same Bayes gain and Bayes gain
increases as the red dashed line moves to the right. To compare
two rules (organisms) we need only determine the line each is
on and then determine which line is more to the top-right. We’ll
return to this point in a later section, Imperfectly Optimal Observers.
2.5. The gain function

We simplified the signal detection example by choosing a very
simple and symmetric gain function (Fig. 1B, inset). A different
choice of gain function would only transform the axes of Fig. 2C
by a linear transformation.6 In Fig. 2D, we replot the gains plot if
we set G(s, S) = 0.5 but keep Gð�s; �SÞ ¼ 1 and Gðs; �SÞ ¼ Gð�s; SÞ ¼ 0. The
result is a compression by 0.5 along the vertical axis. The prior vector
and the equivalent Bayes lines are unaffected and consequently the
Bayes rules in 2C are no longer Bayes rules. We have shifted to a rule
that puts more emphasis on correctly classifying the absence of a
signal. This outcome is intuitive since correctly classifying the ab-
sence of a signal is worth twice as much as correctly classifying
the presence of a signal.
3. Modeling biological perception and action

As just presented, SDT and BDT are mathematical frameworks
that can be used to model biological performance in perceptual-
motor tasks and such models have been widely employed in the
study of perception and action over many decades (see for discus-
sion, Geisler, 1989; Landy, Maloney, Johnston, & Young, 1995). The
visual cue combination literature, for example, compares human
performance in visual estimation tasks to model observers that
minimize squared error (variance). No short review could encom-
pass this very large and important literature and much of this early
work does not systematically vary the elements of SDT/BDT.

In this section we instead review recent experimental studies
that test models of perception and action based on SDT/BDT that
systematically vary elements of SDT/BDT: prior, likelihood, gain.
The first set of studies, for example, test whether human observers
can plan movements to maximize expected gain with arbitrary
gain functions imposed on the outcomes of possible movements.
Each of these studies can be viewed in two ways: as a comparison
of human performance to that of an idealized counterpart that
makes perfect use of the perceptual and motor capabilities of the
organism, or as a process model of the process by which the vi-
suo-motor system carries out the task. We return to this point
below.
6 If the slope of either linear transformation is negative then we have chosen a gain
function that encourages observers to make errors. E.g. we pay the observer more for
false alarms than for correct rejections. The discussion in the text assumes that we
have chosen gains that lead to positive slope parameters.
3.1. Asymmetric gain functions in space

Trommershäuser and colleagues report a series of experimental
tests of whether human observers can cope with arbitrary gain
functions in a simple visuo-motor task (Trommershäuser, Maloney,
& Landy, 2003a,b, 2008). On each trial, the stimulus configuration,
composed of one or two red circles and a green circle (Fig. 3A), was
presented at a random location on a computer touch screen. The
orientation of the target configuration varied from trial to trial as
well. After its appearance, the observer had to reach out and touch
the screen within 700 ms. The observer received monetary rewards
or penalties based on the outcome of his reach. If the observer was
late in hitting the screen, he incurred a large penalty. If he touched
inside the green circle within the time limit he earned a reward
(100 points), but, if within the red circle, he incurred a penalty that
varied with experimental condition. A hit within the region where
the two circles overlapped incurred both the reward and the pen-
alty and if the participant hit the screen outside of both circles
within the time limit, he received nothing.

The observer could decide where to aim but could not com-
pletely control where he hit. A speeded movement aimed at the
center of the green circle had a substantial probability of missing
the green circle altogether because of the observer’s intrinsic visual
and motor uncertainty. Before the formal experiment, the observer
had practiced the movement for several hundred trials. The obser-
ver was rewarded for hitting within the green circle but no penalty
was imposed for hitting within the red. Training continued while
the observer learned to respond within the time limit, minimized
his own motor error, and maximized his probability of hitting
within the green circle.

In the main part of the experiment, the experimenter imposed
penalties for hitting within the red circle as described above. The
observer faced a decision problem that had the same prior and
likelihood functions as during training but with different gain func-
tions specified by the penalties and the spatial arrangement of
circles.

In the experiment of Trommershäuser et al. (2003a), the relative
position of red and green circles varied from trial to trial with six
different horizontal displacements. The six gain functions were
interleaved. For each observer and condition, the aim point that
maximized expected gain (e.g. the white spot in Fig. 3A) was dis-
tinct. The observer’s mean end point in each condition could there-
fore be compared with the aim point that maximized his expected
gain. The comparison for all observers is shown in Fig. 3B. The
observers’ performance shows no obvious deviations or trends
from that what would maximize expected gain as predicted by
BDT.

One possibility is that observers in the decision task gradually
improved their aim in response to penalties and rewards. If so, we
would conclude only that observers could maximize their expected
gain by a gradual ‘‘hill-climbing” process driven by reinforcements.

To test this possibility, Trommershäuser et al. (2003a) exam-
ined the displacements of end points away from the center of the
green circle along the axis joining the centers of the red and green
circles (the white line in Fig. 3A). These are shown in Fig. 3C for one
observer with 0 on the vertical scale corresponding to the mean
displacement across all trials with the stimulus configuration
shown to the right. If observers only gradually learned the aim
point that maximized expected gain, we would expect to see
trends in the early part of these plots. There were no evident pat-
terned trends across the first few trials (Fig. 3C) and the correlation
between successive trials was not significantly different from 0
(possibly because all stimulus configurations were randomly
interleaved).

The implications of Trommershäuser et al. (2003a,b, 2008) are,
first of all, that people either learn their own visuo-motor spatial
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Fig. 3. Asymmetric gain functions in space. (A) A stimulus configuration such as the one shown appears on a computer screen in front of the observer who was instructed to
reach out and touch the screen within 700 ms. The gain function is coded by colored circles whose position and relative orientation change from trial to trial. A hit within the
solid green circle results in a gain of 2.5 cents, within the dashed red circle, a loss of 12.5 cents. The observer moves rapidly and cannot completely control his movement.
Even if he aims at a particular point on the screen the result is a probability distribution of actual endpoints which induce probabilities of hitting within each region. A
possible aim point is marked by a white dot. How much should the observer aim away from the dashed red circle to maximize expected gain? (B) Actual choice of aim point
(horizontal deviation along the white line) plotted versus optimal choice of end point computed via BDT. (C) Trial-by-trial deviation of movement end point (in the horizontal
direction) a function of trial number after introduction of rewards and penalties for six different gain functions. Figure reproduced with permission from Trommershäuser
et al. (2008).
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uncertainty spontaneously during training or, less likely, that they
knew it before the experiment began. Second, they could combine
their knowledge of visuo-motor uncertainty with novel gain func-
tions to choose the aim point that maximizes their expected gain.

The gain function for any task determines the possibilities for
reward and punishment; it is remarkable that observers in the
tasks of Trommerhäuser et al. could come close to maximizing ex-
pected gain with such arbitrary choices of gain function.

People do fail in similar tasks when the gain functions are more
complex. Wu, Trommershäuser, Maloney, and Landy (2006)
pointed out that the stimuli and gain functions used in
Trommershäuser et al. (2003a,b) were always symmetric around
a line joining the centers of the red and green circles (Fig. 3A,
inset). Observers may have deduced that the optimal aim point
always lay on this line and this insight may have aided them in
planning movement.

Wu et al. (2006) used stimuli with a reward region and two
penalties regions differing in magnitude of penalty and found that
observers showed patterned failures in selecting aim points. They
tended to regress toward the line of symmetry.

3.2. Compensating for altered likelihood functions

Körding and Wolpert (2004) asked observers to reach out and
touch a target. Their movement drove a cursor onto a visual target
and nominally the cursor corresponded to the location of their in-
dex fingertip. Observers were never allowed to see the hand they
reached with. On some trials, the cursor was laterally displaced rel-
ative to the actual position of the fingertip. On each movement, the
lateral shift of the cursor was randomly drawn from a Gaussian
distribution with a mean of 1 cm to the right of the finger and a
standard deviation of 0.5 cm. There were four feedback conditions
(Fig. 4A). In the r0 condition, the position of the cursor was sig-
naled by a white dot whose uncertainty simply reflected the obser-
ver’s own visuo-motor error. In the rM or rL conditions, extra
uncertainty was introduced by using a cloud of dots with medium
(rM) or large (rL) standard deviation to mark the nominal location
of the fingertip. In the final, r1 condition, feedback was withheld.
In all conditions, feedback was presented briefly when the fingertip
was halfway to the target (Fig. 3A). The endpoint of the reaching
movement was presented only for the r0 condition.

The question that Körding and Wolpert (2004) addressed was
how much the observer should compensate for uncertain visual
feedback. Suppose that, on a specific trial, the observer sensed a
lateral shift 2 cm to the right. The true lateral shift might be
1.8 cm or 2.2 cm to the right, but the former possibility was more
likely than the latter given that the shift was drawn from a prior
that was Gaussian with mean 1 cm. Intuitively, the observer’s com-
pensation for the 2 cm error should regress toward 1 cm and the
degree of regression depends on condition.



Fig. 4. Compensating for altered likelihood functions. (A) Observers reached out to move a cursor onto a visual target. They never saw their hand. The cursor was horizontally
displaced away from the actual position of the finger by a random distance that had a Gaussian distribution with a mean of 1 cm to the right and a standard deviation of
0.5 cm. Halfway to the target, a visual feedback of the cursor was briefly provided with no extra uncertainty (r0), medium extra uncertainty (rM), large extra uncertainty (rL),
or withheld (r1). (B) The mean lateral deviation of the cursor at the end of the movement plotted against the true lateral shift for a typical observer. Solid lines denote the fit
of a Bayesian observer model, whose slope indicates the relative weights of prior and likelihood functions. The higher the uncertainty, the more weight the observer put on
the prior. Figure reproduced with permission from Körding and Wolpert (2004).
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This trend was observed in human observers. In Fig. 4B, the
mean deviation of the endpoint of the cursor from the target is
plotted against the true lateral shift for a typical observer for each
of the four conditions. If the sensed lateral shift were fully compen-
sated, the mean deviation should have been 0 and the results for
the r0 are not far from this limiting case. In contrast, in the r1 con-
dition, the observer failed to compensate or nearly so. As Fig. 4B
shows, the higher the uncertainty, the more weight on the prior,
the larger the slope. Note that, except for the r0 condition, the ob-
server had no opportunity to progressively learn the appropriate
weight for a specific feedback condition, because no feedback
was provided for the final position of the finger.

Possibly as a consequence, the likelihood functions inferred
from the Bayesian observer model did not agree with the actual
likelihood functions. The observers’ estimates of the standard devi-
ations of the halfway visual feedback were inferred to be 0.67 and
0.8 cm, respectively for the rM or rL conditions, much smaller than
the actual standard deviations, 1 and 2 cm. The picture that
emerges is that of an observer whose performance changes from
condition to condition in qualitative agreement with BDT but
who is effectively using erroneous estimates of likelihood
functions.

3.3. Trading information for accuracy

Several studies have focused on whether people could choose
the temporal parameter that maximizes expected gain of the
movement. In Battaglia and Schrater (2007), observers reached
out to touch an invisible target that was indicated by a cloud
of dots whose positions were randomly drawn from a two-
dimensional Gaussian distribution (Fig. 5A). The observer would
receive a monetary reward if he successfully touched the target
within a specific time limit. From the start of a trial, the dots
appeared one by one across time until the observer initiated the
movement. Therefore, the longer the observer waited to move,
the more dots he would see, and the more accurate the visual esti-
mate of target location. But increased viewing time came at the
expense of a reduction in time available to carry out the movement
and a consequent increase in spatial variability dictated by the
observer’s speed-accuracy tradeoff in movement. With the visual
and motor uncertainties measured in separate control tasks,
Battaglia and Schrater modeled the probability of touching the tar-
get as a function of viewing time (tV) and movement time (tM). There
were three scatter levels of dots, low, medium, and high, leading to
low, medium, and high levels of uncertainty of target position given
the same number of dots. The temporal parameters observers chose
were close to those of the model that maximized their expected gain
and varied with the experimental conditions in the correct direc-
tion. As illustrated by Fig. 5B, the higher the uncertainty associated
with dot scatter level, the more time allocated to viewing.

In the task of Battaglia and Schrater (2007), the time allocation
influenced the consequence of the movement in an indirect way.
Even so, human observers chose the movement parameter that al-
most maximizes their expected gain. It implies that people know
how their spatial accuracy changes as a function of movement time
and are able to combine this knowledge with novel gain functions.
Similarly, Dean, Wu, and Maloney (2007) showed that when the
reward of reaching a target decreases linearly with movement
time, people choose the movement time that nearly maximized
their expected gain. However, a surprising failure was found when
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observers attempted to touch two targets one after another within
an overall time limit (Wu, Dal Martello, & Maloney, 2009; Zhang,
Wu, & Maloney, 2010). For example, in Fig. 6, the observer first
touched the blue circle then the green circle. The two targets cor-
responded to the same (left) or different (right) rewards. Allocating
more movement time to a target would plausibly increase the
probability of hitting it and earning the corresponding reward.
However, even when the second target was five times more
valuable than the first target, observers still allocated slightly more
time to the first target.
3.4. Asymmetric gain functions in time

A recent study considered tasks analogous to those of
Trommershäuser et al. (2003a,b, 2008) but with gain functions that
are specified in the temporal domain (Hudson, Maloney, & Landy,
2008). Before the formal experiment, observers completed exten-
sive training of reaching at specific movement times. During this
initial training period, observers attempted to make movements
of specified durations to hit targets on a computer touch screen
(Fig. 7A). Prescribed times were specified on a time bar and, after
every trial, the observer’s actual duration was also plotted on the
time bar so that observers could compare their time to the pre-
scribed time and improve their training performance.

In the main experiment, observers saw a specification of a tem-
poral gain function. Fig. 7B shows the four temporal gain functions
used in the experiment. Their task was to plan a movement to hit
the target at a time of their choosing. The planned duration of their
movement controlled their expected gain and their performance
was compared to performance maximizing expected gain.
Fig. 5. Trading information for accuracy. (A) An invisible target was indicated by the surro
distribution. The observer started from the ‘‘S” to reach the invisible target within a time l
of time that had elapsed from the onset of the trial. The dots indicating the target accum
make a tradeoff between viewing time and movement time. (B) Movement time plotted a
the expected gain of the observer predicted by the model. The three scatter levels of dots,
position given the same number of dots. The temporal parameters observers chose were
the higher the uncertainty associated with dot scatter level, the more time allocated to
The actual versus optimal movement times across the four con-
ditions and all observers are summarized in Fig. 7C. Observers
were close to optimal. No obvious trends of learning were identi-
fied. Hudson et al. compared observed performance across time
to reinforcement learning models and excluded the possibility that
such models predict observed performance: ‘‘To investigate the
possibility that observers used a hill-climbing strategy during the
main experiment, instead of maximizing expected gain by taking
account of their own temporal uncertainty function and experi-
mentally imposed gain function, we performed a hill-climbing sim-
ulation using each observer’s temporal uncertainty function. In the
simulation, intended duration was moved away from the penalty
region by 3 Dt ms after each penalty and towards the center of
the target region by Dt ms for each miss of the target that occurred
on the opposite side from the penalty (corresponding to the 3:1 ra-
tio of penalty to reward). The value of Dt was initially set to be rel-
atively large. With each change of direction of step, Dt was reduced
by 25% to a minimum step size of 1.5 ms. While this simulation
approximately reproduced the final average reach times observed
experimentally, it does not provide a good model of observer per-
formance. First, there were significant autocorrelations of reach
durations beyond lag zero in the simulation data but not in the
experimental data. Second, a learning algorithm would be ex-
pected to produce substantially higher r values during test than
those observed during training. This is what we found with our
hill-climbing simulation. Using observers’ training r values to pro-
duce the simulated data, the simulation produced 17 out of 20
main-experiment r values that were above the training values,
whereas our observers’ main-experiment r values . . . were entirely
consistent with temporal uncertainty functions measured during
training.” (Hudson et al., 2008, pp. 4–5).
unding cloud of dots whose positions were drawn from a two-dimensional Gaussian
imit. Successful hit resulted in monetary reward. The black bar indicated the amount
ulated with time at a constant rate until the movement started. The observer had to
gainst viewing time for a typical observer. Each dot denotes a trial. Contours denote
low, medium, and high, led to low, medium, and high levels of uncertainty of target

close to optimal and varied with the dot scatter level in the correct direction, that is,
viewing. Figure reproduced from Battaglia and Schrater (2007).
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Fig. 6. A sequential movement task. The observer first touched the blue circle then
the green circle. The two targets corresponded to the same (left) or different (right)
rewards. The movement time allocating to a target would increase its probability to
be hit and thus its reward be won. However, even when the second target was five
times valuable than the first target, observers still stuck to allocate slightly more
time to the first target. Figure reproduced from Zhang et al. (2010). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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In contrast, Mamassian (2008) found that observers in a timing
task also failed to maximize expected gain but in this task observ-
ers had no prior training with the task and therefore less informa-
tion about their own timing uncertainty. Maloney and Mamassian
(2009) discuss the possible effect of training on observers’ abilities
to maximize gain.

3.5. Temporal uncertainty in humans and mice

Balci, Freestone, and Gallistel (2009) used a clever design to
probe how well mice could cope with their own temporal uncer-
tainty. Fig. 8A gives an illustration of the task. On any trial a food
reward would appear at one of two separate feeding hoppers.
There were two type of trials. On short-trials, the reward was
delivered at the ‘‘S” hopper with a short latency (3 s) after the start
of the trial. On long-trials, at the ‘‘L” hopper with a long latency
(6 s).

If the mouse stayed at the right hopper until the time of reward
delivery, it would get the reward and otherwise nothing. The diffi-
culty for the mouse was to decide when to move from the ‘‘S” hop-
per to the ‘‘L” hopper and its performance was limited by its own
timing uncertainty. If, for example, a short-latency reward was
delivered but the mouse had switched from the ‘‘S” hopper to
the ‘‘L” hopper at 2 s, it would lose the reward due to a premature
switch. The opposite error was called a late switch. Due to its uncer-
tainty in estimating elapsed time, the mouse could not completely
determine the actual time of switch. If the mouse chose to switch
after it judged 3 s had elapsed then would likely incur a consider-
able risk of an early switch. On many trials the mouse would judge
that 3 s had elapsed when in fact less than 3 s had elapsed and
short-latency reward was still possible. The mouse would forfeit
the possibility of reward on all such trials. The choice of switch
time that maximized expected gain was determined by the
mouse’s temporal uncertainty.

A counterpart task was carried out on human observers in
which observers were rewarded in points for pressing down one
of two keys at the time of reward delivery. One key offered a
short-latency reward, the other a long, and the human observer
could only press one key at time. The problem for the human
observer was to choose the point in time to switch from the
short-latency reward key to the long-latency reward key. The
short- and long-latencies for human observers were 2 s and 3 s.

Both human and mouse observers completed several sessions.
The probability of short-trials in a session could vary from 0.1 to
0.9. Based on an observer’s temporal uncertainty, Balci et al. used
a BDT model to solve out the aimed switch time that maximized
expected gain for the specific observer. Fig. 8B and C plot optimal
switch time against mean switch time for each observer and prob-
ability condition respectively for humans and for mice. The average
absolute difference between actual and optimal switch times was
172 ms for humans (5% of the 3-s range), and 436 ms for mice
(7% of their 6-s range). For mice, Fig. 8D shows how the mean
switch time T̂ varied almost in the same way with the short trial
probability as the optimal switch time T̂0 did.

For both human and mice observers, this near optimal perfor-
mance was unlikely to be the result of reinforcement learning.
Analyzing trials across the duration of the experiment, Balci et al.
identified no discernible improvement (Fig. 8E).
4. Imperfectly optimal observers

Use of BDT as a benchmark model does not imply that human
visuo-motor processing is in any sense Bayesian inference, even
when human performance is close to ideal (Maloney & Mamassian,
2009). We can view the experimental studies just described as
comparisons of human performance to the performance of a BDT
observer with the same sensory and motor limitations as the hu-
man observer. Geisler (1989) proposed using statistical models as
benchmarks in just this way: ‘‘. . . the ideal discriminator measures
all the information available to the later stages of the visual system
. . .” (Geisler, 1989, p. 30). Thus, we compare human performance to
a BDT observer precisely because the BDT observer makes the best
use of the available information. This benchmark approach grew
out of earlier work by Barlow and colleagues (Barlow, 1972,
1995) and it has proven to be a useful tool in the study of human
perception (see, for example, Najemnik & Geisler, 2005).

Nevertheless, suppose that we have benchmarked human per-
formance in a visuo-motor task and it is remarkably close to that
of its BDT counterpart and we cannot reject the hypothesis that
the BDT observer is an accurate model of human visuo-motor pro-
cessing. This was the outcome of several of the studies we re-
viewed above. Are we justified in advancing the BDT observer as
a model of the perceptual process, at least for this task?

One evident reason that we cannot is technical: a failure to re-
ject the hypothesis of optimal performance may simply be a Type II
Error in statistical terms. It is possible that the null hypothesis of
optimality is not true but that our experimental design and statis-
tical analyses failed to detect the discrepancy between human per-
formance and ideal. The underlying problem is that the BDT
observer is an idealization akin to the notion of a fair coin that
has probability of coming down heads of exactly 0.5. No physical
coin is ever perfectly fair, and every biological organism can have
an off day. In speaking of a fair coin, Feller (1968) justifies the
use of such models: ‘‘. . . we preserve the model not merely for
its logical simplicity, but essentially for its usefulness and applica-
bility. In many applications it is sufficiently accurate to describe
reality.” (Feller, 1968, p. 19). However, if the only ‘‘reality” we have
to describe is that the human observer, in some visuo-motor tasks,
does nearly as well as he can be expected to, then there is no rea-
son to conclude that the elements of BDT correspond to anything in
human visuo-motor processing. As every child learns in kindergar-
ten these days, there are many ways to be excellent.

A second, and separate problem with BDT as a process model is
that the BDT observer needs access to accurate information about
likelihood, gain, and prior. In particular, the prior distribution of a
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Fig. 7. Asymmetric gain functions in time. (A) Observers had to reach out and touch small targets presented at random on a computer screen along the arc of a circle equidistant
from the start point. Rewards and penalties were determined by the time of arrival at the target. (B) Four temporal gain functions were used in four different experimental
conditions. The horizontal axis is movement time and the rewards or penalties associated with each possible movement time were displayed as a time line similar to those
shown here. If the observer touch the target in the time window marked in green (slanted hatching), he received a reward of five points. If instead he arrived in the time
window marked in red (vertical hatching) he lost 15 points. (C) A plot of actual movement durations versus the mean movement time that maximized expected gain for each
condition and each observer. Figure reproduced from Hudson et al. (2008). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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BDT observer is readily interpreted as claims about the environ-
ment and the use of the prior is characteristic of Bayesian ap-
proaches. Nakayama and Shimojo (1992) argue that the amount
of information in the prior for many simple visual tasks is impos-
sibly large. Maloney (2002) estimates the number of world states
(the size of the domain of the prior) for one simple shape from
shading task and shows that it is too large to be plausibly learned
from experience or represented neurally.

Nakayama & Shimojo’s argument is apparently compelling but
there is an evident way out of this difficulty. We need only drop
the requirement that the visuo-motor system have exact estimates
of priors. The resulting model observer follows the computations of
BDT may not maximize expected gain because of its erroneous
estimates of prior, gain or likelihood function (Maloney, 2002).
We refer to them as imperfectly optimal observers7 echoing the title
of Janetos and Cole (1981).

In Fig. 9, for example, we consider the case of an imperfectly
optimal signal detection observer with an erroneous estimate of
the prior. The black arrow is the correct prior vector, the red arrow
is the erroneous estimate. The observer selects the Bayes rule ~d dic-
7 Echoing the title of Janetos and Cole (1981), described below.
tated by the erroneous prior rather than the true Bayes rule d. With
respect to the true prior, the rule ~d is just another sub-optimal rule
whose equivalent Bayes gain corresponds to the red dashed line.
The maximum possible Bayes gain corresponds to the black dashed
line passing through the gains plot of the Bayes rule. The cost of the
observer’s error is proportional to the distance between the red
and black dashed lines. It is evident that, depending on the discrep-
ancy between the true and assumed priors, the loss in Bayes gain
may be small or large and, if small, that the consequences of the
error to the observer are slight.

Moreover, consider the minimax rule which assumes nothing
about the prior. We can see that the minimax decision rule dm

has higher Bayes gain than the rule ~d. In this case, the observer
would be better off discarding his ‘‘knowledge” about the prior
and using the minimax rule instead. However, we can also see that
for a wide range of choices of erroneous prior, the resulting errone-
ous rule actually has higher Bayes gain than the minimax rule. If,
for example, the observer were confident that p > 0.5 but other-
wise ignorant of p, he would do well (in terms of Bayes gain) to
use a possibly erroneous estimate of prior rather than the minimax
rule.

Moreover, recall that BDT allows us to do more than compute
the optimal Bayes rule. We can also order any two imperfectly



A B C

ED

S L

Rewarded

S L

Late switch

S L

Premature switch

S L

Rewarded

Fig. 8. Temporal uncertainty in humans and mice. (A) An illustration of the temporal decision task for mice in Balci et al. (2009). S and L denote two separate feeding hoppers. In
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need to decide what time to switch. (B and C) Optimal switch time against mean switch time for each observer and probability condition, respectively for human and mice.
(D) Mean switch times ðT̂Þ and optimal switch times ðT̂0Þ of mice as functions of short trial probability. Error bars denote ±1 standard error. (E) The proportion of experimental
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sequence of trials within a given condition. Figure (except A) reproduced from Balci et al. (2009).

2372 L.T. Maloney, H. Zhang / Vision Research 50 (2010) 2362–2374
optimal observers by determining which of the two has the higher
Bayes gain with respect to the true prior. We can potentially mea-
sure the true prior for any task describable by BDT and also mea-
sure the observer’s prior experimentally (e.g. Adams, Graf, &
Ernst, 2004; Mamassian & Landy, 2001) and work out the cost to
the observer of any error in estimating priors. Similarly, Körding
Fig. 9. The consequences of error in choice of prior. The true prior vector is shown
in black and the corresponding Bayes rules is d, marked with a black dot. If the
observer uses the erroneous prior vector shown in red and the corresponding
decision rule, ~d, that would be a Bayes rule for this prior vector, then the cost of
using the erroneous prior to the observer is the difference between the two dashed
lines (marked by a red block arrow). Use of the minimax rule dm would lead to
higher expected gain than the decision rule ~d based on the erroneous prior. For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
and Wolpert (2004), described above, estimated likelihood func-
tions from human performance and found they were discrepant
from actual likelihood functions.

Janetos and Cole (1981) in an article entitled ‘‘imperfectly opti-
mal animals”, pointed out a third problem with using idealized
models as models of biological performance. They described two
tasks where animals’ performance well approximated the perfor-
mance of an optimal algorithm similar in spirit to BDT as presented
here. They then pointed out that, for both tasks, there was a very
simple behavioral rule that would approximate the performance
of the optimal algorithm. The experimenter might mistakenly
conclude that an organism implementing the simple rule was an
instantiation of the optimal rule.
5. Testing the Bayesian hypothesis

The Bayesian approach is not a specific falsifiable hypothesis
but rather a (mathematical) language that allows us to describe
the structure of the environment, the flow of visual processing,
the planning of action. It is a powerful language and therein lies
a difficulty. After the data are collected it is not very difficult to de-
velop a Bayesian model that accounts for it. Indeed, almost many
applications of Bayesian methods to perception and action are post
hoc fitting exercises. If Bayesian models are to be judged useful,
then, they must also permit prediction of experimental outcomes,
quantitatively as well as qualitatively.

In the discussion of the imperfectly optimal observers, we ar-
gued that it was reasonable to expect the prior embodied in a bio-
logical observer to be discrepant from the true objective prior and
consequently, an observed discrepancy between the prior on X
estimated from experimental data and the true prior on X in the
world is not conclusive evidence against the Bayesian approach.
However, if we find ourselves estimating the same prior on X in
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two different experiments, and find that the two estimates are dis-
crepant, then there are serious grounds to question the entire
Bayesian enterprise. We refer to this criterion as a comparison test
and it is evidently a test of whether human behavior is controlled
by a system of consistent priors on states of the world.

Similarly, Maloney and Mamassian (2009) describe a different
test of BDT that they refer to as a transfer test. The test assesses
whether the visuo-motor system can store and recall and retrieve
priors, likelihood functions, and gain functions independently of
one another. Maloney and Mamassian argue that the ability to
transfer prior information acquired while learning one task to an-
other task carried out later in the same environment would suggest
that prior can be stored and reinstated independent of particular
tasks.

Consider, for example, the tasks of Trommershäuser et al.
(2003a,b) and that of Hudson et al. (2008). In both cases observers
had the potential to learn their own spatial and temporal motor
uncertainty in training tasks with gain functions different from
those employed in the main experiments. This uncertainty was
in effect a prior distribution dictating how a movement aimed at
a particular point in space and time would be realized.

In the main part of the experiment, they were challenged with a
variety of arbitrary gain functions but the movement and its uncer-
tainty were unchanged. That is, the training task and the main
experimental task shared the same prior. The lack of any trends
in performance in the main experiments of Trommershäuser
et al. (2003a,b) and Hudson et al. (2008), indicate that observers
could recall and combine prior information learned during training
with novel gain functions. Balci et al. (2009) also found no evident
trends in performance. Observers in these tasks successfully trans-
ferred prior information from one task to a second, passing the
transfer test of Maloney and Mamassian (2009).
6. Conclusion

Statistical decision theory (SDT) and Bayesian decision theory
(BDT) are mathematical frameworks that are particularly congenial
to describing the kinds of tasks biological organisms engage in
(Milner & Goodale, 1995). Both theories emphasize the potential
gain or loss associated with the outcomes of actions and both
emphasize the constraints on action introduced by uncertainty.
They provide a natural vocabulary for crafting idealized counter-
parts to actual observers in order to compare human performance
to the best performance possible for the human observer.

In this review we first presented the elements of SDT and BDT
and then discussed recent work that systematically manipulates
these elements as part of an experimental design. The overall con-
clusion we can draw is that human observers can exploit arbitrary
gain functions imposed on the environment and compensate at
least in part for changes in environmental priors. They do not al-
ways maximize Bayes gain but, in many experiments, they come
remarkably close without obvious pattern in their failures. In other
experiments (e.g. Zhang et al., 2010) they fail, sometimes
dramatically.

By varying gain functions as an independent variable, we poten-
tially observe a wider range of behavior than we would otherwise
observe. Moreover, the pattern of failures and successes observed
may aid us in developing accurate process models of human vi-
suo-motor processing.

We also discussed interpretations of BDT as process models of
human performance (‘‘perception as Bayesian inference,” Knill &
Richards, 1996). We asked in effect whether the elements of BDT
(priors, etc.) were useful components of process models of human
visuo-motor processing and noted that very simple, non-optimal
models can well approximate ideal performance (Janetos & Cole,
1981). We focused on a class of model observers that we referred
to as imperfectly optimal observers that implement BDT but with
possibly erroneous estimates of prior, gain, and likelihood func-
tions. We discussed two methods for testing such whether human
performance is captured by an imperfectly optimal observer: com-
parison tests and transfer tests (Maloney & Mamassian, 2009).

SDT and BDT are fundamentally about combining information
about uncertainty and gain so as to maximize the expected gain
of the observer. This topic is also central to the study of human
decision making. It is interesting to compare human performance
in visuo-motor tasks which is often found to be near-optimal to
that observed in decision making experiments where decision
makers typically do not maximize gain (e.g. Kahneman & Tversky,
2000). The observed deviations are large and patterned, with
observers typically showing distortions in their use of both proba-
bility and gain. One study (Wu, Delgado, & Maloney, 2009) directly
compared human decision making with a mathematically equiva-
lent motor task and found that human observers distort probability
in both tasks but that the distortions were markedly different in
the motor and ‘‘classical” decision tasks.

In summary, the kinds of experiments inspired by SDT/BDT are
powerful tools for exploring the limits of human visuo-motor capa-
bility and the SDT/BDT framework allows comparison of human
performance in apparently different tasks such as decision making
and movement planning.
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