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Planning routes across economic terrains: maximizing  
utility, following heuristics
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We designed an economic task to investigate human planning of routes in landscapes where 
travel in different kinds of terrain incurs different costs. Participants moved their finger across 
a touch screen from a starting point to a destination. The screen was divided into distinct 
kinds of terrain and travel within each kind of terrain imposed a cost proportional to distance 
traveled. We varied costs and spatial configurations of terrains and participants received fixed 
bonuses minus the total cost of the routes they chose. We first compared performance to 
a model maximizing gain. All but one of 12 participants failed to adopt least-cost routes and 
their failure to do so reduced their winnings by about 30% (median value). We tested in detail 
whether participants’ choices of routes satisfied three necessary conditions (heuristics) for a 
route to maximize gain. We report failures of one heuristic for 7 out of 12 participants. Last of 
all, we modeled human performance with the assumption that participants assign subjective 
utilities to costs and maximize utility. For 7 out 12 participants, the fitted utility function was 
an accelerating power function of actual cost and for the remaining 5, a decelerating power 
function. We discuss connections between utility aggregation in route planning and decision 
under risk. Our task could be adapted to investigate human strategy and optimality of route 
planning in full-scale landscapes.
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We designed a route selection task with explicit economic 
payoffs to simulate traveling across terrains differing in cost. 
Participants moved their finger along the surface of a touch screen 
from a starting point to a destination. Their trajectory could run 
across “field” terrain and “desert” terrain depending on the path 
they choose (see Figure 1B for an illustration). Traveling in differ-
ent terrains imposed different costs per unit distance. Participants 
were informed of the cost rate of each terrain beforehand and 
practiced traveling within each type of terrain before the main 
route planning task.

During the planning task, participants received monetary bonuses 
on each trial that consisted of a fixed reward minus the cost of the route 
they traveled on that trial. A route R is composed of a series of sub-
routes each of which lies within a kind of single terrain. We denote the 
distance traveled in the jth terrain by I

j
 and the cost per unit distance for 

that terrain as C
j
. A route that visits n kinds of terrains in order can be 
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Participants were free to take any route from the starting point to the 
destination. We varied the geometric layout of the regions and cost 
ratio of travel in desert and field and compared participants’ actual 
routes to routes minimizing cost and thereby  maximizing gain1. 

IntroductIon
Navigating through the environment costs time and energy, 
and may incur danger. Many species show adaptive route selec-
tion, balancing different costs for effective foraging (Stephens 
and Krebs, 1986). However, studies of human route selection 
typically frame the problem in terms of distance minimization. 
Participants are asked to visit a novel set of spots sequentially 
and they typically minimize the total distance traveled (Säisä 
and Gärling, 1987; MacGregor et al., 2000; Vickers et al., 2001; 
Wiener et al., 2008).

But distance and obstacles are not the only concerns in planning 
routes. In planning a route from a starting point to a destination, 
people typically trade off several kinds of costs and benefits (Gärling 
and Gärling, 1988; Golledge, 1995). In Figure 1A, for example, it 
is plausible that a wise traveler would not go directly toward the 
marked destination but would instead take into account the dif-
ficulty associated with crossing different kinds of terrain.

The present study is focused on this important but neglected 
aspect of navigation. Terrains vary in cost to the organism and 
the minimum cost route is often not the route minimizing dis-
tance traveled. Costs associated with terrain are known to affect 
route selection: Sympatric spider monkeys and woolly monkeys 
(Di Fiore and Suarez, 2007) and human hunters (Yost and Kelley, 
1983) tend to travel along ridge tops. This behavior is conjectured 
to be energetically less costly than crossing rivers and climbing hills 
(Milton, 2000). Moreover, monkeys can plan their routes in advance 
to take into account novel spatial distributions of food (Gallistel 
and Cramer, 1996; Janson, 2007; Valero and Byrne, 2007).
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We were also interested in characterizing, in detail, the particular 
pattern of failure of each participant by investigating the partici-
pant’s use of or failure to use heuristics -- rules that are characteristic 
of optimal route planning. As we shall explain in detail in the Results, 
the optimal route should (1) only change direction when changing 
terrain and otherwise be straight (straight-line heuristic); (2) have 
a left–right flip if the terrains undergo a left–right flip (left–right 
symmetry heuristic, LR heuristic); and (3) have symmetry around the 
horizontal line bisecting the screen (up–down symmetry heuristic, 

The route of least cost (and maximum gain) is unique,  determined 
by the geometry and cost ratio of the two terrains. The costs and 
layout of the stimuli were chosen so that routes minimizing cost 
follow the pattern field-desert-field with n = 3.

We compared human performance to ideal performance 
 maximizing gain by computing each participant’s efficiency, his or 
her actual winnings divided by the maximum winnings possible. 
In computing the maximum possible, we took into account each 
participant’s finger movement variability.

Figure 1 | route planning across terrains. (A) A landscape and a goal. The 
energy costs and risk associated with different paths in natural landscapes can 
vary markedly. A possible starting point and goal are marked. (B) Example of the 
economic route planning task. The task was to move one’s index finger along the 
surface of a touch screen from the starting point (blue circle) to the destination 
(gray circle). The screen consisted of two regions: desert (yellow or red) and field 

(green). Dimensions of the stimuli are shown on the margins. The parameter λ 
denotes the distance from the vertex of the desert to the vertical middle line 
joining start point and goal. Each unit of distance traveled incurred a cost. Traveling 
in the yellow desert cost three times more per unit distance than traveling in the 
field, while traveling in the red desert cost five times more. Participants received a 
fixed bonus minus the cost incurred in travel for each trial. See text.
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60 cm × 24 cm rectangle area on the screen. During each trial, 
the entire screen either looked like field terrain (in green) or like 
desert (sandy in yellow or red). Participants were told that the 
traveling cost rates were 1, 3, and 5 points per cm, respectively for 
the field, yellow desert, and red desert. They were also told that 
similar terrains would be used in the planning phase, where 200 
points would equal US$1.

Feedback of the length and the points of the actual trajectory 
were given after each trial. To encourage precise movement, if the 
length of trajectory in a trial exceeded 1.08 times of the linear dis-
tance between the starting point and destination, the trial would 
be repeated immediately. Both successful and unsuccessful trials 
entered later analysis.

The training gave participants practice in finger movement 
and allowed us to learn each participant’s motor variability. It 
also helped participants understand travel costs associated with 
 different terrains.

Participants completed one training block for each type of ter-
rain. The order for half of the participants was field, yellow desert, 
and red desert; for the other half, field, red desert, and yellow desert. 
The aimed distance could be 6, 12, 18, 24, or 30 cm. In each block, 
each distance condition had 10 repetitions. The training phase had 
3 blocks × 5 distances × 10 = 150 trials in total.

Planning
Each trial began with the starting point on a green background. 
The desert and the destination (Figure 1B) appeared when partici-
pants put their finger on the starting point. The task was to move 
the finger on the screen from the starting point to the destination. 
Participants knew that they would receive a monetary reward if 
the cost of their trajectory was smaller than the cost of the straight 
route from the starting point to the destination. The amount of 
reward equaled to the difference of the two. The cost rates of terrains 
were the same as those they had learned in the training phase. No 
feedback was given for individual trials. The accumulated total of 
points for each block of 50 trials was reported after the block.

Two factors were manipulated: the geometry of the desert and 
the cost ratio of desert to field. The distance of the vertex of the 
desert to the vertical bisecting line, λ, could be 14, 18, 22, 26, or 
30 cm. The cost ratio of desert to field was 3 (yellow) or 5 (red), 
as in training. The orientation of the desert was counterbalanced: 
the “sharp end” of the desert could be on the left (as in Figure 1B) 
or on the right (a left–right flip of Figure 1B).

There were six blocks, each for a single desert type. For half of 
the participants, the order of blocks was yellow, red, yellow, red, 
yellow, red; for the other half, red, yellow, red, yellow, red, yellow. 
In each block, trials of different λ and orientation were in random 
order, with each λ-by-orientation combination repeated five times. 
The planning phase had 6 blocks × 5 λ × 2 orientations × 5 = 300 
trials in total.

PartIcIPants
Twelve participants, 18–32 years old, seven female and five male, 
participated. All had normal or corrected-to-normal vision and 
were not aware of the purpose of the experiment. Eleven of 
them were right-handed and one left–handed (P06). All used the 
index finger of the dominant hand for movements on the touch 

UD heuristic). Each heuristic is a necessary but not a sufficient condi-
tion that a planned route maximizes gain. The pattern of the actual 
routes would reveal the use of, or failure to use, heuristics.

One last factor we considered is the participant’s assignment of 
subjective value or utility to costs and rewards imposed by the experi-
mental task. The utility of a monetary gain or loss is typically modeled 
as a power function of the gain or loss (Luce, 2000, Eq. 3.18). We 
denote the exponential parameter of the utility function as α. For the 
specific terrain layouts in this experiment, there is a unique path mini-
mizing cost weighted by utility for any choice of the utility parameter 
α. Conversely, if we assume that a participant is minimizing cost for 
some choice of α, then given the participant’s choices of path across 
experimental conditions, we can estimate the participant’s α.

MaterIals and Methods
aPParatus
Stimuli were presented in a dimly lit room on a 32″ Elo touch screen 
mounted in a Unistrut frame at 48° from the horizontal. The display 
was controlled by a Dell Pentium D Optiplex 745 computer using 
the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Participants 
were seated at a comfortable viewing and touching distance about 
37 cm away, wearing a single finger cut from a cloth glove to reduce 
the resistance of movement. A touch screen calibration procedure 
was performed for each participant before the experiment.

stIMulI
An example of the economic route planning task is shown in 
Figure 1B. The screen was 70 cm wide and 39 cm high. The start-
ing point (in blue) and the destination (in gray), both circles of 
0.8 cm radius, were 24 cm apart from each other on the vertical line 
bisecting the screen. The desert was a yellow or red textured area 
with two borders of quadric curves, symmetrical about a horizon-
tal line bisecting the screen. The field was green and occupied the 
remaining area of the screen. The straight route from the starting 
point to the destination would pass through 6 cm of the field, then 
12 cm of the desert, and then 6 cm more of the field.

On each trial, participants were required to place their index fin-
gertip on the starting point and then move along the touch screen, 
maintaining contact, to the destination. The moving finger would 
leave behind a gray trace, and, once the finger arrived at the desti-
nation, the trace would turn blue. If the finger broke contact with 
the screen before the completion of the movement, the participant 
had to put the finger at the point where contact was lost (with an 
accuracy of 0.8 cm) to continue the trial.

Procedure and desIgn
The experiment took approximately an hour to complete and con-
sisted of two phases: training and planning. For both phases, during 
the finger’s movement on the touch screen, the screen coordinates 
of the finger, (x, y), and the associated time, were recorded every 
17 ms. There was no time limit imposed on initiating or completing 
the movement, either in training or in the main experiment.

Training
During training, participants were instructed to move their index 
finger along the touch screen in a straight line from a starting point 
to a destination, both of which were randomly chosen within a 
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For each participant, we examined whether the actual routes 
conformed to this straight-line heuristic. Given the points where an 
actual route intersected the desert, we could compute how long the 
route would be if it had the same intersecting points but accorded 
with the straight-line heuristic. We defined the actual length of the 
route divided by this would be length as the straight-line index. The 
mean straight-line indices were 1.06, 1.01, 1.01, 1.02, 1.03, 1.03, 
1.02, 1.01, 1.07, 1.04, 1.02, 1.06, respectively for P01–P12. Taking 
into account motor error, we concluded that a participant failed the 
straight-line heuristic only if the mean straight-line index signifi-
cantly exceeded his or her own actual-to-planned ratio measured 
during training. According to a one-tailed independent two-sample 
Student’s t-test, seven participants’ straight-line index was not sig-
nificantly larger than their actual-to-planned ratio. For the other 
five, the difference, though significant, was small, resulting in an 
increase in route length no more than 2%. These small differences 
seemed to arise from an imperfect localization of the turning points 
at terrain borders. In summary, participants’ performances agreed 
well with the straight-line heuristic. Any deviations were small and 
had negligible effects on winnings.

screen. The experiment had been approved by the University 
Committee on Activities Involving Human Subjects (UCAIHS) 
of New York University. All participants gave Informed consent 
prior to the experiment. They received US$12 per hour plus a 
performance-related bonus. Total payment ranged from US$29 
to US$38.

results
Unless otherwise stated, the significance level used was 0.05 with a 
Bonferroni correction for 12 participants (0.05/12 = 0.0042).

Influence of Motor errors
Human motor errors might make the actual trajectory longer 
than the planned route. We estimated this influence based on 
data of the training phase, where participants were required 
to move their finger in a straight line. For each participant, we 
computed the length ratio of actual to straight of each trial, 
which we refer to as the actual-to-planned ratio. The mean 
actual-to-planned ratios, were 1.06, 1.01, 1.01, 1.02, 1.03, 1.03, 
1.02, 1.01, 1.07, 1.04, 1.02, 1.06, respectively for Participants 
P01–P12. The ratio did not significantly vary with the aimed 
straight distance, according to a one-way ANOVA analysis for 
each participant.

effIcIency of route PlannIng
Examples of the optimal route and the actual routes for one con-
dition and one participant are provided in Figure 2A. To assess 
how close participants were to optimal, we defined efficiency as 
the monetary gain of the actual route divided by the maximum 
gain. The maximum gain is corrected for motor errors by multiply-
ing the cost of the optimal route by the mean actual-to-planned 
ratio of the participant2. For each participant, we computed the 
efficiency for each trial and performed a two-tailed one-sample 
Student’s t-test to see whether the mean efficiency was different 
from 100%.

As shown in Figure 2B, all participants were significantly worse 
than optimal except P09. The median of the efficiency of the sub-
optimal participants was 71%: for every $7 they won, they could 
have won about $3 more with better planning.

We tested whether participants’ efficiencies were improving dur-
ing the experiment. The efficiencies of the first two, the second two, 
and the last two blocks for each participant were entered into a one-
way ANOVA analyses. Only one participant (P01) had efficiencies 
that increased significantly in later blocks.

use of heurIstIcs
A possible optimal route is illustrated in Figure 3A. We examined 
three underlying heuristics.

Straight-line heuristic
Since the shortest distance between two points is a straight line, it is 
intuitive that the optimal route should be a straight line within any 
single terrain. A curved route (Figure 3B) cannot be optimal.

Figure 2 | efficiency of route planning. (A) Examples of optimal and actual 
routes. The condition shown had cost ratio 3:1 (yellow desert) and a λ value of 
22 cm with the desert pointing to the right. The black trajectory is the optimal 
(minimum cost, maximum gain) route. The blue trajectories are Participants 
P02’s actual routes, trial by trial. (B) Mean efficiency for each participant. 
Efficiency was computed for each trial as the monetary gain of the actual 
route divided by the maximum possible gain. Efficiencies could exceed 100% 
because of a correction for motor error explained in the text. All participants 
were significantly sub-optimal except P09. Error bars mark 95% confidence 
intervals (with Bonferroni correction for 12 participants).

2Due to this correction, it is possible to get efficiencies greater than 100% if the par-
ticipant’s trajectory, especially the part in the desert, was straighter in the planning 
phase than in the training.
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The difference of (X
in

 + X
out

)/2 between right-oriented and left–
oriented trials gave a measure of their left–right bias. Participant 
P04 (right-handed) was biased 2.1 cm toward the left and the 
 left–handed P06 was biased 0.9 cm toward the right.

We concluded that 10 out of 12 participants conformed to the 
LR heuristic.

Up–down symmetry heuristic
The starting point and the destination are symmetrically placed 
about the horizontal line bisecting the screen as are terrains. It is 
evident that the optimal route should have the same symmetry. 
Inspecting participants’ actual routes by eye, we identified one 
and only one patterned violation of the symmetry that we refer 
to as the one-turn bias (illustrated in Figure 3D). Instead of hav-
ing two symmetric turns at the two desert borders, respectively, 
the route has only one turn, at one of the borders. During infor-
mal debriefings after the experiment, participants who had the 
one-turn bias commented that they did not make a second turn 

This agreement made it simple to describe participants’ actual 
routes. Any route was determined by only two points, the points 
where the route entered and exited the desert. For convenience, we 
used their horizontal coordinates, denoted as X

in
 and X

out
.

Left–right symmetry heuristic
In the experiment we had pairs of conditions whose layouts were 
just left–right flips of each other. Intuitively, the optimal routes 
should also be left–right flips of each other. Thus, the two routes 
in Figure 3C cannot both be optimal.

We tested the use of this LR heuristic by examining whether 
the routes in the left–oriented and right-oriented trials crossed the 
desert at flipped horizontal positions. For convenience, we changed 
the orientation of theX axis when we flipped the desert area around 
the vertical axis as shown in the inset to Figure 3.

A 2 (orientation) by 10 (2 cost ratios × 5 λ) ANOVA was run on 
(X

in
 + X

out
)/2 for each participant. No interactions were significant. 

Only two participants had a significant main effect of orientation. 

Figure 3 | use of heuristics. (A) A possible optimal route. The route illustrates 
two heuristics: the straight-line heuristic (within one type of terrain, the route 
should be a straight line, changing direction only when changing terrain), and the 
UD heuristic (the route should be symmetrical around the horizontal center line). 
(B) Hypothetical failure of the straight-line heuristic. Participants’ actual routes 
agreed well with the straight-line heuristic. (C) Hypothetical failure of the LR 
heuristic. Since the layout of the terrains of the lower panel is a left–right flip of 
that of the upper panel, the optimal route of one condition reflected around the 
vertical midline is always the optimal route of the other. The routes of one 
right-handed participant (P04) were significantly biased toward left. The routes of 
one left–handed participant (P06) were significantly biased toward right. See 

text. The performances of the other 10 participants were consistent with the LR 
heuristic. (D) Hypothetical failure of the UD heuristic. The path consists of two 
straight-line segments changing direction only at the lower edge of the desert. It 
is not symmetrical around the horizontal midline. (e) Index of the failure of the 
UD heuristic. A path consistent with the UD heuristic will enter and exit the 
desert at the same horizontal coordinate, Xin = Xout, traveling vertically through 
the desert. We plot the mean difference between ∆X = Xin − Xout for each 
participant. Perfect symmetry corresponds to zero difference. Seven of the 12 
participants had differences ∆Xsignificantly larger or smaller than zero, indicating 
a failure of symmetry. See text. Error bars mark 95% confidence intervals (with 
Bonferroni correction for 12 participants).
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counts the cost of the desert as added to that of the field4. We 
refer to the models as the separate cost model and the added cost 
model, respectively. The three heuristics discussed above still 
correspond to necessary properties of the optimal path under 
either model.

Participants planned routes that were either up–down 
 symmetrical or one-turn. In either case, the route could be cap-
tured by one variable, which we referred to as X

plan
. For up–down 

symmetrical routes, we define X
plan

 = (X
in

 + X
out

)/2; for one-turn 
routes, we define X

plan
 = min(X

in
 + X

out
), that is, the horizontal 

coordinate of the turning point.
Concerning whether the route is up–down symmetrical or one-

turn and whether the separate or added cost model is used, we now 
have four alternative models for the perceived cost: Symmetrical-
Separate (SS), Symmetrical-Added (SA), One-turn-Separate (OS), 
One-turn-Added (OA). In each model, the perceived cost could be 
expressed as a function of the route parameter X

plan
 together with 

the utility parameter α.
We assume that in each specific condition of cost ratio and λ, 

participants chose the X
plan

 that minimized the perceived cost of 
the route. For each participant, we fitted the actual X

plan
 of the 10 

conditions (2 cost ratio × 5 λ) with the four models one by one in 
the least-squares method. We set an upper limit of 3 for the fitted α 
since larger values produce little change in predicted behavior. As an 
index of goodness of fit, the proportion of data variance explained 
by each model is shown in Table 1. The maximum proportion of 
each participant is highlighted in bold. Except P12, all the maxi-
mum proportions were above 0.7, with a median of 0.85.

because “the shortest distance between two points is a straight 
line”. That is, the one-turn bias was a result of a misuse of the 
straight-line heuristic.

We computed the difference between X
in

 and X
out

 as an index of 
symmetry (Figure 3E). A one-tailed one-sample Student’s t-test was 
performed on the difference for each participant. Seven participants’ 
differences from zero were significant, implying a use of the one-
turn bias. For the remaining five participants we could not reject 
the hypothesis that the routes they planned were symmetric.

We expected that the one-turn bias would reduce the partici-
pant’s monetary gain in the route planning task. Other things equal, 
it might be that the larger the difference between X

in
 and X

out
, the 

lower the participant’s efficiency. To test this, we computed the 
Pearson’s correlation between the absolute value of the difference 
between X

in
 and X

out
 and the efficiency for the 12 participants, 

r = −0.46, p = 0.13. The correlation was negative as expected but 
failed to reach significance probably because the number of par-
ticipants (12) was small so that the effects of their differences in 
other aspects, e.g., the utility function (discussed next), made the 
effect of the one-turn bias less visible.

Models of utIlIty
All but one participant failed to choose the least costly routes and 
half of the participants even failed to have symmetrical routes. 
However, the routes they planned did vary systematically with cost 
ratio and λ.

We considered the possibility that the systematic failures of 
route planning that we observed were due to non-linearities in 
participants’ utility functions. Following (Luce, 2000, Eq. 3.18), we 
modeled the utility function for losses as a power function with 
parameter α.

The actual routes across the desert were made up of three line 
segments3 R = (I

f1
,C

f1
;I

d
,C

d
;d

f2
,C

f 2
). Where I

f 1
, I

d
, I

f 2
 respectively 

denote the lengths of the segments from the starting point to desert, 
within the desert, and from desert to the destination, C

f
 and C

d
 

denote cost rates of the field and the specific desert (C
d
/C

f
 is the 

cost ratio), and α is a free parameter.
We formulated two models of utility for the economic route 

planning task. The two models differed in how the task was framed 
(Kahneman and Tversky, 1979). In the first model, the perceived 
total cost of a route was assumed to be the sum of the cost of each 
segment transformed by the utility function.

U l C C Cf d f f f d d f f
− ( ) = ( ) + ( ) + ( )1 2 1 2, ,l l l l l

α α α

 

(2)

In the second model, the perceived total cost was the cost of a route 
that is of the same total length but is entirely in the field plus the 
extra cost of the segment that is in the desert,

U C C Cf d f f f d f d f d
− ( ) = + +( )( ) + −( )( )l l l l l l l1 2 1 2, ,

α α

 
(3)

These two models and possible framings are not exhaustive, 
but they are plausible. The former model regards the desert 
and the field as separate cost sources, while the latter model 

Table 1 | Proportion of variance explained by different utility models.

Participant route Model 

 symmetry

  SS SA OS OA

P02 S ---- 0.82 0.31 ----

P03 S ---- 0.74 0.11 ----

P05 S ---- 0.78 0.35 0.21

P06 S ---- 0.86 ---- 0.70

P09 S 0.97 0.97 0.89 0.83

P01 O 0.55 0.57 0.85 ----

P04 O 0.80 0.85 0.95 0.21

P07 O ---- 0.74 ---- 0.15

P08 O 0.71 0.45 0.87 ----

P10 O 0.77 0.76 0.78 0.09

P11 O 0.98 0.76 0.61 0.26

P12 O ---- ---- 0.31 ----

Participants with symmetric routes are placed first (S denotes symmetrical. 
O denotes one-turn). The number in bold is the largest variance explained for 
any particular participant. The variance explained for entries marked “----” was 
indistinguishable from 0.

3Even for those participants who exhibited one-turn bias we could model their path 
as three line segments two of which were collinear.

4The assumption of separate cost may incur a violation of dominance in the sense 
that a route could be preferred than another route even when the former has both 
a longer length and a larger proportion of length in the desert. The assumption of 
added cost avoids this problem.
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Figure 4 shows the data and best fit of X
plan

 for each participant. 
The estimated α was less than one for five participants and greater 
than one for the remaining seven. We will discuss the interpretation 
of α in the Discussion.

BIologIcal costs
It is possible that some of the participants chose a sub-optimal 
route or make only one turn because it would take less motor 
effort or require a shorter planning or movement time than 
would the optimal route. That is, participants might be  trading 
off  external economic costs with internal biological costs of 
effort or time (Trommershäuser et al., 2003a,b). We exclude these 
possibilities below.

We found that most participants’ choice of symmetrical or one-
turn routes was consistent with their best model. For example, 
for P02 who had symmetrical routes, symmetrical model SA was 
the best model, which accounted for 82% of the variance. All the 
five participants with symmetrical routes was best fit with the SA 
model (which assumes a symmetrical route). Five of the seven 
participants with one-turn routes were best fit with the OS model 
(which assumes a one-turn route). This agreement validated our 
assumptions about the utility function. For the two participants 
who exhibited the one-turn bias but were best fit by a symmetrical 
model, we conjecture that they used the symmetrical model as an 
approximation to the one-turn model during the planning, possibly 
because the latter was easier to imagine.

Figure 4 | Fit of utility model. The mean of the route parameter Xplan is 
plotted against λ. Yellow and red respectively correspond to cost ratios of 3:1 
and 5:1, respectively. Dots denote data. Lines denote the model fit to data. 
Each panel is for one participant. The model shown for each participant is 
labeled as one of OS, OA, SS, SA. See text. It is the model that with the 
highest variance accounted for (R2) for that participant. The R2 is also shown. 
For models SS and SA. the models that assume symmetrical routes with three 

segments, Xplan denotes (Xin + Xout)/2, where Xin, Xoutare the horizontal 
coordinates of the position where each route enters and exits the desert, 
respectively. Models OS and OA are based on one-turn routes that violate 
symmetry. For these models, Xplan denotes Xtum, the horizontal coordinate of 
the single turning position. The free parameter of the utility function, α, 
estimated from the data for each participant, is shown. See text for full 
descriptions of the models.
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correlation between movement time and the absolute value of 
X

out
 − X

in
 across trials was −0.15, 0.02, 0.16, −0.04, 0.16, 0.17, 

−0.35, 0.16, −0.07, −0.01, −0.04, 0.01, respectively for P01–P12. 
Among them, only P06 had a significant but small positive cor-
relation. However, since P06 did not exhibit the one-turn bias, 
the positive correlation probably rose out of chance. Thus the 
adoption of the one-turn bias was not the result of an attempt 
to minimize movement time.

dIscussIon
We designed an economic task to investigate how well humans 
plan routes across landscapes consisting of two different terrains 
(field and desert) that imposed different costs per unit distance 
on the traveler. The cost per unit distance of the desert was either 
three times greater that of the field (yellow desert) or five times 
greater (red desert). Participants received monetary rewards that 
depended on the routes they selected. They were motivated to find 
the least costly route.

Viewed in the abstract, we are investigating spatial cognition 
and human ability to reason geometrically (Gallistel, 1990). While 
our work builds on previous research ranging from that of Tolman 
(1948) to Shepard (1975), the economic route planning task we 
used allowed us to manipulate reward structures explicitly and 
evaluate both qualitatively and quantitatively the optimality of 
human performances. The use of reward structures to character-
ize terrain is highly innovative and at the same time it captures an 
important, and neglected, aspect of realistic navigational tasks in 
uneven terrain.

We first compared their performance to performance maximiz-
ing gain. We found that all but one participant failed to maximize 
gain (Figure 2B). Two thirds of the participants received more 
than 20% less than they might have earned with an optimal choice 
of route.

While there are tasks where human fail, notably in decision 
making under risk (Kahneman and Tversky, 1979; Luce, 2000) there 
are also tasks where they come close to maximizing expected gain, 
e.g., economic movement planning tasks (Trommershäuser et al., 
2003a,b; Battaglia and Schrater, 2007; Dean et al., 2007). Certainly 
our task resembles the latter more than the former. Therefore it 
is surprising to find patterned failures in our task, given the past 
literature.

Participants’ failures were unlikely to be due to errors in esti-
mating route length. People have been found to be very accurate in 
length estimation, whether for perceptually presented lines rang-
ing from 1 cm to 1 m (Teghtsoonian, 1965), or for memory recall 
of large distances up to several kilometers (Gärling et al., 1991). 
Neither could the failure be attributed to motor errors, as we dem-
onstrated in the Section “Results.” The errors represented failures 
to select routes that minimized cost across different terrains.

Optimal routes could be characterized by simple geometric 
properties that we refer to as heuristics. For example, an optimal 
route passing through terrain homogeneous in cost must be a 
straight line. Consequently, an optimal route must consist of a 
series of straight-line segments and can only change direction at 
boundaries between terrains differing in cost. We identified three 
heuristics including the straight-line heuristic just described, the 
LR heuristic, and the UD heuristic.

Distance traveled
One possibility is people would prefer to travel a shorter distance. 
If so, we would expect that the lengths of the actual routes would 
be shorter than the optimal routes. To test this prediction, we com-
puted the length ratio of actual to optimal route for each participant 
and each trial and divided it by the mean actual-to-planned ratio 
of the participant to correct for motor errors. The corrected length 
ratio of actual to optimal was predicted to be over than one. The 
mean corrected length ratios were 1.04, 1.20, 1.23, 1.05, 1.20, 0.84, 
1.37, 1.02, 0.97, 1.06, 0.98, and 1.07, respectively, for P01–P12. We 
tested whether each participant’s length ratios were significantly 
less than 1 and found that only two participants’ (P06 and the opti-
mal P09) corrected length ratio was significantly smaller than one. 
Therefore, less effort associated with a shorter moving distance was 
unlikely to be an explanation of route planning sub-optimality.

Time used
In each trial, the desert and destination appeared as soon as the 
participant put his finger on the starting circle of 0.8 cm radius. 
Movement initiation was defined as the time when the partici-
pant moved his finger out of the starting circle. We computed the 
time interval from stimuli appearance to movement initiation as 
the planning time and that from movement initiation to the time 
when the finger arrived at the destination as the movement time. 
Trials in which the finger lost contact with the screen before the 
completion of the movement were excluded from analysis (no more 
than 6% for any participant). The mean planning times were 3.14, 
1.14, 2.32, 3.88, 1.10, 1.10, 1.28, 1.77, 2.37, 2.42, 2.53, and 1.16 s, 
respectively, for P01–P12. The mean movement times were 4.20, 
2.18, 2.97, 1.85, 2.35, 2.47, 1.65, 2.49, 1.68, 3.50, 3.03, and 2.11 s, 
respectively, for P01–P12.

There was no time pressure in the experiment. If participants 
had an internal incentive to save time and this prohibited them from 
planning or executing the route of least economic cost, we might 
find that participants with higher efficiency had a longer planning 
or movement time. However, Pearson’s correlation analysis for the 
12 participants revealed no significant correlation between effi-
ciency and planning time, r = 0.33, p = 0.30, or between efficiency 
and movement time, r =−0.09, p = 0.79. We find no support for the 
conjecture that participants’ sub-optimal performances were the 
result of minimizing time spent on the task. Note that the optimal 
participant P09 had a mediocre planning time and a short move-
ment time.

We also computed the Pearson’s correlation coefficients between 
the planning or movement time and the efficiency across trials for 
each participant. The correlation between the planning time and 
the efficiency was −0.24, 0.01, −0.06, −0.11, 0.01, −0.01, 0.02, 0.01, 
−0.08, 0.04, −0.27, −0.04, respectively for P01–P12, among which 
no positive correlations were significant. The correlation between 
the movement time and the efficiency was −0.24, −0.08, 0.03, −0.08, 
−0.28, 0.07, −0.14, −0.13, −0.28, −0.10, −0.31, −0.11, respectively for 
P01–P12. No positive correlations were significant. In summary, we 
see no indication of a tradeoff between time and efficiency.

Another possibility we explored was that participants used 
one-turn routes to minimize movement time. If true, we would 
expect a positive correlation between movement time and the 
absolute difference of X

in
 and X

out
 of each trial. The Pearson’s 
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resulting route. It is plausible that participants prefer gently curved 
paths to piecewise linear paths with abrupt changes in direction 
due to the inertial costs associated with making sharp turns. If 
so, they may consider this biological cost (Trommershäuser, et al., 
2003a,b) in planning routes and trade biological costs off against 
other costs. We conjecture that, with increasing costs per unit dis-
tance traveled, participants’ route will more and more resemble a 
joined series of straight lines as the relative importance of biological 
costs diminishes. Research is needed to see whether this prediction 
is borne out and to determine how to develop models that predict 
human performance in full-scale economic landscapes containing 
terrains differing in cost.

The economic navigation task described here provided us with 
a tool to probe visual cognition, the use of spatial heuristics and 
distortions of cost by human route planners. The unambiguously 
defined payoffs permitted us to uncover human fallacies that might 
not be accessible through other approaches.

Given the importance of navigation in human life, the investiga-
tion of possible fallacies in human navigation deserves the same 
attention as the fallacies in human cognition (Arrow, 1958; Tversky 
and Kahneman, 1974).

In the present study we examined human navigation in terrains 
with different costs associated with different terrains. We could cer-
tainly consider how the cost structure of the environment interacts 
with factors known to affect navigation such as external represen-
tation of spatial information (Zhang, 1997) or gender difference 
(Kim et al., 2007).

In terms of biological foraging, the costs we considered were 
analogous to energy and the optimal routes planned minimized 
“energy”. We could also consider route planning in environments 
where each unit of distance entailed a fixed risk. An animal traveling 
through heavily wooded terrain, for example, might avoid clear-
ings precisely because crossing them entails a heightened risk of 
being observed by a predator, a risk that increases with time spent 
in the open. With this interpretation we could consider navigation 
problems where the terrain itself is uniform but the risks associated 
with different parts of the terrain are not, e.g., marine or aerial 
navigation (Hutchins and Lintern, 1995).

We have characterized human performance in terms of expected 
utility and adherence to heuristics, a computational theory corre-
sponding to the first level of David Marr’s hierarchy (Marr, 1982). 
The next step would be to develop a detailed algorithmic descrip-
tion (Marr’s second level) of how humans plan routes across ter-
rains differing in cost. As we noted above, heuristics serve to reduce 
the “search space”, but the question remains as to how humans select 
one route from among those that remain.

The current experiment captures important aspects of the struc-
ture of navigation tasks in realistic terrains. Given a map and asked 
to plan a route of a few kilometers across terrain varying in cost 
(see Figure 1), the participant would be engaged in a task very 
similar to ours. The geometric reasoning involved is an impor-
tant aspect of visual cognition. We do not claim that our conclu-
sions will necessarily generalize to speeded tasks similar to ours 
or large-scale tasks involving routes across hundreds of meters or 
kilometers. We conjecture that they will and, in any case, our work 
provides clear, testable hypotheses relevant to these richer, more 
complex problems.

The evident usefulness of heuristics is to permit the traveler to 
narrow down the candidate routes before selecting the least expen-
sive among those remaining. Our experimental design allows us 
to contrast overall maximization of reward and adherence to rules 
necessary but not sufficient for optimal performance.

We found that most participants correctly used the straight-line 
and LR heuristics. In real environments, with costs that gradually 
change across space, optimal routes are rarely straight lines. It is 
interesting that participants in our task, where maximum gain and 
maximum utility paths consist of straight-line segments, did select 
paths that were close to straight lines across uniform terrain.

However, almost half of the participants failed to follow the UD 
heuristic. Instead of choosing routes with two symmetrical turns 
at the borders of the desert, they chose routes with only one turn 
typically at an edge between field and desert (Figure 3D). As a con-
sequence, one segment in the field and one segment in the desert 
were collinear, and comments during debriefing suggested that their 
failure was an over-generalization of the  straight-line heuristic.

We also examined whether we could interpret participants’ 
failures as a consequence of assigning non-linear utilities to costs 
incurred in each terrain. The heuristics described above were also 
necessary characteristics of any route maximizing utility. We com-
pared the individual fits of four possible models that differed in 
heuristics used and estimated the parameters of the utility function 
for each participant separately.

In studies using numerical lotteries, the exponential parameter 
of the utility function is estimated to be less than one for most 
people (Luce, 2000), which implies that people may prefer a single 
large loss to several small losses that sum to the same value as the 
large loss. For example, Thaler and Johnson (1990) found that 75% 
of people preferred losing $150 all at once to losing $100 and then 
$50. In our experiment, however, the number of participants with 
parameter values greater than 1 is slightly greater than the number 
of those with parameter values less than 1.

How would participants behave if they could actually walk 
within enlarged copies of our landscapes rather than just trac-
ing a path? Previous research on route planning in full-scale land-
scapes has focused on the effect of impenetrable obstacles on route 
selection. The dynamical system model developed by Warren and 
colleagues (Fajen and Warren, 2003; Fajen et al., 2003) predicted 
routes in good agreement with human route selection while freely 
moving in landscapes with obstacles. The obstacle in their experi-
ments was in the middle of the starting position and the destination. 
The predicted routes with obstacles deviated from those without 
obstacles only within a small range around the obstacle. That is, 
the walker would head straight toward the destination as if the 
obstacle was absent until he came very close to the obstacle. Their 
results suggest that routes are not fully planned ahead of time. 
While participants could readily plan each route as a whole in our 
experiment, the same cannot be said of the planning of extended 
routes in natural terrain.

In contrast to our results on the touch screen, the resulting 
routes described in Fajen and Warren (2003; Fajen et al., 2003) are 
typically curved and do not follow the straight-line heuristic even 
when alternative routes formed of line segments could be shorter 
and pass no closer to the obstacle. These deviations from linearity 
are possibly due to the absence of explicit costs on the length of the 
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