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Hubel and Wiesel’s ice-cube model proposed that V1 orientation and ocular dominance functional maps intersect orthogonally to 
optimize wiring efficiency. Here, we revisited this model and additional arrangements at both cellular and pixel levels in awake 
macaques using two-photon calcium imaging. The recorded response fields of view were similar in size to hypercolumns, each 
containing up to 2,000 identified neurons and representing full periods of orientation preferences and ocular dominance. We 
estimated each neuron/pixel’s orientation, ocular dominance, and spatial frequency preferences, constructed respective functional 
maps, computed geometric gradients of feature preferences, and calculated intersection angles among these gradients. At the cellular 
level, the intersection angles among functional maps were nearly evenly distributed. Nonetheless, pixel-based maps after Gaussian 
smoothing displayed orientation-ocular dominance and orientation–spatial frequency orthogonality, as well as ocular dominance– 
spatial frequency parallelism, in alignment with previous results, even though the trends were weak and highly variable. However, these 
Gaussian smoothing effects were not observed in cellular maps, indicating that the pixel-based trends may not accurately represent 
the relationships among feature-tuning properties of V1 neurons. We suggest that the widely distributed intersections among cellular 
maps can ensure that multiple stimulus features are represented within a hypercolumn, and no pair of features is represented with 
the least economical wiring (e.g. parallel intersections). 
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Introduction 
V1 neurons are specialized in processing basic stimulus features, 
such as orientation, spatial frequency (SF), motion direction, 
depth, and color. They also have different eye preferences or 
ocular dominance (OD). Each feature specialization appears to 
have a distinct functional map, in which neurons tuned to a 
similar feature dimension (e.g. a specific orientation) are spatially 
clustered, and the feature tuning of clusters changes smoothly 
with horizontal displacement (Hubel and Wiesel 1962, 1968; 
Bartfeld and Grinvald 1992; Weliky et al. 1996; Lu and Roe 2008). 

How do different functional maps coexist geometrically? In 
their seminal “ice-cube” theory, Hubel and Wiesel (1977) hypothe-
sized that for optimal wiring efficiency, the orientation and ocular 
dominance maps should intersect orthogonally. This hypothesis 
has found support in subsequent intrinsic-signal optical imaging 
(ISOI) (Ts’o et al. 1990; Bartfeld and Grinvald 1992) and two-photon 
imaging studies (Nauhaus et al. 2016), as well as by computational 
modeling (Swindale 1992; Najafian et al. 2022). Furthermore, ISOI 
and two-photon imaging studies have also reported orthogonal 
intersections between the orientation and SF maps (Hübener et al. 
1997; Yu et al. 2005; Nauhaus et al. 2012). 

However, when considering multiple functional maps, assum-
ing orthogonality among all maps becomes geometrically 
challenging. To address this difficulty, functional maps have 
been suggested to intersect orthogonally only in areas where 
both maps have high gradients (Yu et al. 2005). Alternatively, as 

orientation–OD maps and orientation-SF maps tend to intersect 
orthogonally, low and high SF areas may be close to the center or 
border of OD columns, respectively (Hübener et al. 1997; Nauhaus 
et al. 2016), so that OD-SF maps tend to be parallel (Nauhaus 
et al. 2016). Another solution is to treat multiple feature maps as 
a single map of spatiotemporal energy, which may provide a more 
accurate description of population activity in V1 (Basole et al. 
2003). 

The proposed orthogonal or parallel relationships among func-
tional maps are based on pixel-based functional maps primar-
ily derived from ISOI studies. While ISOI has been valuable in 
identifying large-scale functional patterns in the visual cortex, it 
presents several technical shortcomings that may affect the accu-
racy of results. ISOI signals lack cellular information due to low 
resolution, have a low signal-to-noise ratio (SNR), and are subject 
to artifacts of blood vessels and Gaussian smoothing. Moreover, 
changes in light reflectance due to hemodynamic responses can 
be spatially diffuse, which would lead to a loss of precision in 
localizing neuronal activity (Das and Gilbert 1995). Consequently, 
the extent to which the predicted geometric relationships among 
functional maps accurately reflect the underlying organizational 
principles of neuronal feature tuning properties in V1 remains 
fairly uncertain. 

In contrast, two-photon imaging technology offers a promising 
solution to investigate these relationships with higher resolution, 
even if recent two-photon imaging studies (Nauhaus et al. 2012;
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Nauhaus et al. 2016) studying this topic have primarily relied on 
pixel-based maps. Our two-photon imaging setup can capture a 
response field of view (FOV) of 850 × 850 μm2, roughly correspond-
ing to the size of a V1 hypercolumn, and typically identifies up 
to 2,000 neurons within each FOV (Li et al. 2017). Our previous 
imaging results have demonstrated full periods of clustered orien-
tation tuning and OD (Ju et al. 2021; Zhang et al. 2024), suggesting 
that cellular functional maps may better reveal the true geometric 
relationships among functional maps. Furthermore, incorporating 
cellular information is crucial, as our previous results have indi-
cated that cellular SF maps have much narrower SF tuning ranges 
and weaker SF clustering (Guan et al. 2021) compared to pixel-
based SF maps in a study by Nauhaus et al. (2012), despite the 
fact that both types of maps were constructed with two-photon 
calcium imaging technology. This disparity thus highlights the 
importance of a cellular approach in accurately elucidating the 
relationships among functional maps in V1. 

Materials and methods 
Monkey preparation 
Monkey preparations were identical to those reported in a previ-
ous study (Guan et al. 2021; Ju et al. 2021). Five rhesus monkeys 
(Macaca mulatta) aged 4 and 6 years were each prepared with two 
sequential surgeries under general anesthesia and strictly sterile 
conditions. In the first surgery, a 20 mm diameter craniotomy was 
performed on the skull over V1. The dura was opened and mul-
tiple tracks of 100 to 150 nl AAV1.hSynap.GCaMP5G.WPRE.SV40 
(AV-1-PV2478, titer 2.37e13 [GC/ml], Penn Vector Core) spaced 
approximately 1 mm apart were pressure-injected at a depth of 
∼350 μm. Then, the dura was sutured, the skull cap was re-
attached with three titanium lugs and six screws, and the scalp 
was sewn up. After the surgery, the animal was returned to the 
cage and treated with injectable antibiotics (Ceftriaxone sodium, 
Youcare Pharmaceutical Group, China) for 1 week. Postoperative 
analgesia lappaconite hydrobromide was also injected twice a day, 
1 ml per injection. The second surgery was performed 45 days 
later. A T-shaped steel frame was installed for head stabilization, 
and an optical window was inserted onto the cortical surface. 
Data collection could start as early as 1 week later. More details of 
the preparation and surgical procedures can be found in Li et al. 
(2017). The procedures were approved by the Institutional Animal 
Care and Use Committee, Peking University. 

Behavioral task 
After a 10-day recovery from the second surgery, monkeys were 
seated in primate chairs with head restraints. They were trained to 
hold fixation on a small white spot (0.1◦) with eye positions mon-
itored by an ISCAN ETL-200 infrared eye-tracking system (ISCAN 
Inc.) at a 120 Hz sampling rate (Monkeys A, C, & D) or an Eyelink-
1000 (SR Research) at a 1,000 Hz sampling rate (Monkeys B & E). 
During the experiment, trials with the eye position deviated 1.5o 

or more from the fixation before stimulus offset were discarded 
as ones with saccades and repeated. For the remaining trials, 
the eye positions were mostly concentrated around the fixation 
point, with eye positions in over 95% of trials within 0.5o from the 
fixation point. For example, the eye movements of Monkey B were 
sampled 1,000 times for each 1,000 ms stimulus presentation per 
trial. A trial was regarded to have proper fixation when at least 
500 samples of eye positions were within a radius of 0.50◦ from the 
central fixation. We found that 95.14% of the trials were within a 
cutoff radius of 0.50◦. 

Visual stimuli 
For Monkeys A, C, and D, visual stimuli were generated using 
the ViSaGe system (Cambridge Research Systems) and presented 
on a 21” Sony G520 CRT monitor (refresh rate = 80 Hz, resolu-
tion = 1,280 pixel × 960 pixel, pixel size = 0.31 mm × 0.31 mm). 
Due to the space limit, the viewing distance varied depending 
on the stimulus spatial frequency (30 cm at 0.25, 0.5, and 1 cpd; 
60 cm at 2 cpd; and 120 cm at 4 and 8 cpd). For Monkeys B and 
E, visual stimuli were generated using Psychotoolbox 3 (Pelli and 
Zhang 1991) and presented on a 27” Acer XB271HU LCD monitor 
(refresh rate = 80 Hz native, resolution = 2,560 pixel × 1,440 pixel 
native, pixel size = 0.23 mm × 0.23 mm). The viewing distance was 
50 cm for lower frequencies (0.25, 0.5, and 1 cpd) and 100 cm for 
higher frequencies (2, 4, and 8 cpd). For both monitors, the screen 
luminance was linearized by an 8-bit look-up table, and the mean 
luminance was approximately 47 cd/m2. 

A drifting square-wave grating (SF = 4 cpd, contrast = full, 
speed = 3 cycles/s, starting phase = 0o, and  size = 0.4◦ in diameter) 
was first used to determine the location, eccentricity (1.1o to 
3.5o) and size (0.8o to 1o) of the population receptive field 
associated with an FOV, as well as ocular dominance columns 
when monocularly presented to confirm the V1 location. This 
fast process used a 4× objective lens mounted on the two-photon 
microscope and revealed no cell-specific information. 

Neuronal responses were measured with a high-contrast (0.9) 
Gabor grating (Gaussian-windowed sinusoidal grating) drifting at 
2 cycles/s in opposite directions perpendicular to the Gabor orien-
tation, which was presented monocularly to either the ipsilateral 
or the contralateral eye. The starting phase of the drafting Gabors 
was always 0o. The Gabor grating varied at twelve orientations 
from 0◦ to 165◦ in 15o steps and six SFs from 0.25 to 8 cpd in 1-
octave steps. 

In addition, three stimulus sizes (with constant stimulus cen-
ters) were used at each spatial frequency for two purposes. Firstly, 
our pilot measurements suggested very strong surround sup-
pression with larger stimuli. Therefore, comparing responses to 
different stimulus sizes could help approximate the receptive 
field size of each neuron that produced maximal response and 
least surround suppression. Secondly, larger stimuli would have 
better chances of triggering neurons whose RF centers and the 
stimulus center were misaligned. It is worth noting that for addi-
tional neurons whose RFs had less overlap even with the largest 
stimuli used, they would have weaker and less orientation-tuned 
responses because of the Gaussian-blurred stimulus edge. These 
neurons would most likely be filtered out during our multiple 
steps of selection of orientation-tuned neurons (see below). 

Specifically, the stimulus sizes, represented by the σ of the 
Gaussian envelope of the Gabor, were 0.64λ and 0.85λ at all SFs, 
and were additionally smaller at 0.42λ when the SFs were 0.25 
to 1 cpd and larger at 1.06λ when the SFs were 2 to 8 cpd 
(λ: wavelength). Gabors at various SFs, if having the same σ in 
wavelength unit, would have the same number of cycles. Here at 
the smallest σ (0.42λ), the Gabors still had a sufficient number of 
cycles (frequency bandwidths = 1 octave) (Graham 1989) so that  
the actual stimulus spatial frequencies were precise at nominal 
values. In terms of visual angle, σ = 1.68o, 2.56o, and 3.36o at 
0.25 cpd; 0.84o, 1.28o, and 1.68o at 0.5 cpd; 0.42o, 0.64o, and 0.85o 

at 1 cpd; 0.34o, 0.42o, and 0.53o at 2 cpd; 0.17o, 0.21o, and 0.26o at 
4 cpd, and 0.08o, 0.11o, and 0.13o at 8 cpd, respectively. 

Each stimulus was presented for 1,000 ms, with an interstim-
ulus interval (ISI) of 1,500 ms sufficient to allow the calcium 
signals to return to the baseline level (Guan et al. 2020). Each 
stimulus condition was repeated twelve times with six repeats for
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each opposite direction. Recording at a specific viewing distance 
was completed before moving to the next one, and all stimuli at 
each relevant distance were pseudo-randomly presented. When 
a stimulus was presented monocularly to one eye, the other eye 
was covered with a translucent eye patch, which reduced the 
impacts of short-term monocular deprivation. During recordings, 
contralateral and ipsilateral stimulations alternated in blocks of 
trials, with at least a 10-min break between blocks. During the 
breaks, the translucent eye mask was off. Each block of trials 
typically lasted 20 to 25 min. 

Two-photon imaging 
Two-photon imaging was performed at V1 superficial layers 
using a Prairie Ultima IV (In Vivo) two-photon microscope (Prairie 
Technologies) for Monkeys A, C, and D, and a FENTOSmart two-
photon microscope (Femtonics) for Monkeys B and E, along with 
a Ti:sapphire laser (Mai Tai eHP, Spectra Physics). The recording 
depth was 200 μm for Monkeys A to C, 250 μm for  Monkey D,  
and 210 μm for Monkey E. One FOV measuring 850 × 850 μm2 

was selected in each animal and imaged using a 1,000 nm 
femtosecond laser under a 16× objective lens (0.8 N.A., Nikon) 
at a resolution of 1.6 μm/pixel. Fast resonant scanning mode 
(32 frames per second) was chosen to obtain continuous images 
of neuronal activity (8 frames per second after averaging every 
4 frames). During recording, the strength of fluorescent signals 
(indicated by the mean luminance of a small area) was monitored 
and adjusted if necessary to compensate the drift of fluorescent 
signals. 

Imaging data analysis: Initial screening of ROIs 
The data were analyzed using customized MATLAB codes. A 
normalized cross-correlation-based translation algorithm was 
used to reduce motion artifacts (Li et al. 2017). Then fluorescence 
changes were associated with corresponding visual stimuli 
through the time sequence information recorded by the Neural 
Signal Processor (Cerebus system, Blackrock Microsystem). By 
subtracting the mean of the four frames before stimuli onset (F0) 
from the average of the sixth−ninth frames after stimuli onset (F) 
across five or six repeated trials for the same stimulus condition 
(same orientation, spatial frequency, size, and drifting direction), 
the differential image (ΔF = F − F0) was obtained. 

For a specific FOV, imaging data with ipsilateral and con-
tralateral conditions were combined using a normalized cross-
correlation-based translation algorithm on the basis of the same 
reference images from recordings with the least head movements 
and highest self-correlations. Then the regions of interest (ROIs) or 
possible cell bodies were determined through sequential analysis 
of 432 differential images in the order of spatial frequency (6), 
size (3), orientation (12), and eye (2) (6 × 3 × 12 × 2 = 432). The 
first differential image was filtered with a band-pass Gaussian 
filter (size = 2 to 10 pixels), and connected subsets of pixels (>25 
pixels, which excluded smaller vertical neuropils) with average 
pixel value > 3 SD of the mean brightness were selected as ROIs. 
Then, the areas of these ROIs were set to mean brightness in 
the next differential image before the bandpass filtering and 
thresholding were performed. This measure gradually reduced 
the standard deviations of differential images and facilitated the 
detection of neurons with relatively low fluorescence responses. If 
a new ROI and an existing ROI from the previous differential image 
overlapped, the new ROI would be on its own if the overlapping 
area (OA) < 1/4 ROInew, discarded if 1/4 ROInew < OA < 3/4 ROInew, 
and merged with the existing ROI if OA > 3/4 ROInew. The merges 
would help smooth the contours of the final ROIs. This process 

was repeated for all 432 differential images twice to select ROIs. 
Finally, the roundness for each ROI was calculated as: 

Roundness = 
√

4π × A 
P 

where A was the ROI’s area and P was the perimeter. Only ROIs 
with roundness larger than 0.9, which would exclude horizontal 
neuropils, were selected for further analysis. The sizes of the 
ROIs ranged from 3.3 to 19.3 μm in diameter, with an average of 
8.9 ± 1.3 μm. 

Imaging data analysis: orientation tuning, SF 
tuning, and ocular dominance 
The ratio of fluorescence change (ΔF/F0) was calculated as a 
neuron’s response to a specific stimulus condition. For a specific 
neuron’s response to a specific stimulus condition, the F0n of the 
n-th trial was the average of 4 frames before stimulus onset (−500 
to 0 ms), and Fn was the average of the fifth to eighth frames after 
stimulus onset (500 to 1,000 ms). F0n was then averaged across 12 
trials to obtain the baseline F0 for all 12 trials (to reduce noises 
in the calculations of responses), and �Fn/F0 = (Fn − F0)/F0 was 
taken as the neuron’s response to this stimulus at the n-th trial. 
For a small portion of neurons (e.g. 2.1% to 9.8% in Monkeys A to 
E) showing direction selectivity, as their responses to two opposite 
directions differed significantly (P < 0.05, Friedman test), the six 
trials at the preferred direction were considered for calculations 
of �Fn/F0 as the neuron’s responses to a particular stimulus. F0 
was still averaged over 12 trials at two opposite directions. 

Several steps were then taken to determine whether a neuron 
was tuned to orientation and/or spatial frequency, and, if so, its 
ocular dominance index was calculated. For each monocular con-
dition, the orientation, SF, and size (σ ) that produced the maximal 
response among all conditions were selected. Then, responses 
to the other 11 orientations and 5 SFs were determined at the 
selected SF and size. Second, to identify orientation and/or SF-
tuned neurons, a nonparametric Friedman test was performed to 
determine whether a neuron’s responses at 12 orientations or 6 
SFs were significantly different from each other under at least one 
monocular stimulation. To reduce Type-I errors, the significance 
level was set at α = 0.01. Third, for those showing significant 
orientation differences, the trial-based orientation responses of 
each neuron were fitted with a Gaussian model: 

R (θ) = a12−
(

θ−θ0 
σ

)2 

+ b 

where R(θ) was the response at orientation θ, and the free parame-
ters a1, θ0, σ , and b were the amplitude, peak orientation, standard 
deviation of the Gaussian function, and minimal response of the 
neuron, respectively. Only neurons with a goodness of fit R2 > 0.5, 
at least under one monocular stimulation, were finally selected as 
orientation-tuned neurons (Fig. 1B). The tuned orientation of the 
neuron was one of two monocular peak orientations that gener-
ated a higher response. The amplitude parameter a1 was positive 
in all selected orientation neurons. Fourth, for those showing a 
significant SF difference, the trial-based SF responses of each 
neuron were further fitted with a difference-of-Gaussian model. 

R(sf ) = a1e−
(

sf 
σ1

)2 

− a2e−
(

sf 
σ2

)2 

+ b 

where R(sf ) was a neuron’s response at spatial frequency sf , the  
free parameters a1, σ 1, a2, and  σ 2 were amplitudes and standard
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Fig. 1. Two-photon imaging and orientation, spatial frequency, and ocular dominance responses of exemplar neurons. A) Two-photon imaging. Left: 
Examples of the average 2-photon images over a recording session. Right: Extracted neurons from the exemplar images. B) Orientation responses of 
six exemplar neurons from Monkey A to stimuli presented in the contralateral and ipsilateral eyes, respectively. The smooth curves are Gaussian 
fittings. From top to bottom: Neurons preferring the contralateral eye, both eyes, and the ipsilateral eye. C) Spatial frequency responses of the same 
neurons. The smooth curves are difference-of-Gaussian fittings. Error bars represent ±1 SE. The ODI was calculated and labeled under each neuron’s 
ID number. 

deviations of two Gaussians, respectively, and the free parameter 
b was the minimal response among six spatial frequencies. Only 
those with a goodness of fit R2 > 0.5, at least under one monocular 
stimulation, were selected as SF-tuned neurons. The tuned SF of 
the neuron was one of two monocular peak SFs that generated 
a higher response. Finally, an ocular dominance index (ODI) was 
calculated for each selected orientation and/or SF-tuned neurons: 
ODI = (Ri − Rc)/(Ri + Rc), where Ri was the maximal response 
to ipsilateral stimulation, and Rc was the maximal response to 
contralateral stimulation. 

Pixel-based data analysis 
Pixel-based data analysis was the same as the analysis in 
Nauhaus et al. (2012). Specifically, the orientation and SF tuning 
functions of a specific pixel were calculated in the same way as 
the orientation and SF tuning functions of a specific neuron. The 
orientation preference was computed as (1/2) � ∑

θ Tθ ei2θ , where  
Tθ was the orientation tuning function. The SF preference was 
determined by first computing the center of mass (CoM) of the SF 
tuning function in the logarithmic domain, CoM

[
Tlog2(φ)

]
, followed 

by taking 2CoM to transform the metric into units of cycles/degree. 
The ODI was calculated as ODI = (Ri − Rc)/(Ri + Rc). 

For further analysis, the imaging region was cropped on the 
basis of an SNR metric. The SNR of each pixel was measured 
as (μmax—μmin)/(SEmax + SEmin), where μmax and μmin were the 
mean responses to the most and least preferred stimuli, and SEmax 

and SEmin were the corresponding SEs. Next, this SNR image was 
smoothened with a 2D Gaussian (σ = 25 μm). The areas consisting 
of pixels with SNR > 2 were used for analysis, while areas with 
SNR < 2 were blackened in the images. 

The orientation, OD, and SF maps were further smoothened 
with a 2D Gaussian (σ = 25 μm) before their gradient Intersections 
were calculated. 

Cluster index 
To quantitatively characterize the clustering of orientation tun-
ing, SF tuning, OD, and intersection angles, we calculated the 
difference of preferred orientations (�POs), SFs (�PSFs), ODIs 
(�ODI), and the intersection angle (�X Angle) of each neuron 
pair as a function of their absolute cortical distance, as well 
as the corresponding baselines with neuron positions shuffled. 
The strength of clustering as a function of cortical distance was 
calculated as the inverse of (�POsmean, �PSFsmean, �ODImean, or
�X Anglemean)/Baseline, and the values within the first 50 μm of  
cortical distance were taken as corresponding cluster indices (CI 
> 1 when neurons were clustered), respectively. 

Gradient intersection 
The gradient of a specific neuron/pixel in an orientation map 
was calculated in the following steps: First, the difference of 
preferred orientations (�ori) between this neuron/pixel and one 
of the adjacent neurons/pixels within a radius of 400 μm was  
calculated as the vector magnitude; second, if �ori < −90o, then
�ori = �ori +180o, and if �ori >90o, then �ori = �ori − 180o. The  
modified �ori represented the vector magnitude, and the vector 
direction was from this neuron/pixel to the adjacent neuron/pixel. 
This 

−−→
�ori vector was then normalized by the distance between 

the two neurons/pixels. Third, the vector sum of all 
−−→
�ori between 

this neuron/pixel and each adjacent neuron/pixel was obtained as 
this neuron/pixel’s orientation gradient. The OD and SF gradients 
of a specific neuron/pixel were the vector sums of all 

−−−→
�ODI and−−−−−→

�log2SF between this neuron/pixel and every other neuron/pixel 
in the FOV, respectively. 

Next, the intersection angle of one neuron/pixel between 
SF and OD maps was derived from the resultant vector: 

−→
R = 

ei×2
[
Angle

(−−−→
�ODI

)
−Angle

(−−−−−→
�log2SF

)]
. The function Angle calculates the 

angle of gradient, producing values between 0◦ and 180◦. Then,
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the intersection angle of one neuron/pixel equals
∣∣∣ 1 

2 Angle
(−→

R
) ∣∣∣, 

yielding a value between 0◦ and 90◦ when Angle
(−→

R
)

is defined 
within the range of −180◦ to +180◦. Finally, the overall SF-OD 
intersection angle was determined by the vector sum:

−→
RO = ∑

k 
−→
Rk . 

The overall SF-OD intersection angle equals
∣∣∣ 1 

2 Angle
(−→
RO

) ∣∣∣, ranges 
from 0◦ to 90◦. The intersection and overall intersection angle 
between orientation and SF, along with orientation and OD, were 
computed in the same manner. 

Results 
We imaged the responses of V1 superficial-layer neurons to a 
monocularly (both contralaterally and ipsilaterally) presented 
Gabor stimulus at various orientations and spatial frequencies 
in five response FOVs, each from one awake, fixating macaque. 
The recording depth varied from 200 to 250 μm among  FOVs.  
Each FOV had a size of 850 × 850 μm2 and was located 1.1o 

to 3.5o from the central fixation point. Image processing and 
data analysis identified a total of 9,967 ROIs or possible neurons 
(Fig. 1A). Among them, 91.2% were tuned to orientation and/or 
spatial frequency with contralateral and/or ipsilateral stimulus 
presentations (Friedman test), as exemplified by six neurons 
in Fig. 1B and C. The ODI of each neuron was calculated as 
ODI = (Ri − Rc)/(Ri + Rc), where Ri and Rc were the neuron’s 
respective peak responses to ipsilateral and contralateral stim-
ulations. ODI =−1 and 1 would indicate complete contralateral 
and ipsilateral eye preferences, respectively, and ODI = 0 would  
indicate equal preferences for both eyes. 

Consistent with our earlier report (Ju et al. 2021), the cellu-
lar orientation maps displayed significant orientation clustering 
(Fig. 2A). The cluster indices of the five FOVs ranged from 2.50 
to 5.87 (see Materials and Methods for the calculation of cluster 
indices), with a median cluster index of 3.75 (Fig. 2D). The OD 
maps (Fig. 2B) also showed clustered neurons, with OD cluster 
indices ranging from 1.32 to 2.24 and a median of 1.72 (Fig. 2E). 
The SF maps (Fig. 2C) displayed a limited range of SF tuning, 
with few neurons tuned to low SFs. Furthermore, SF clustering 
was weak, with cluster indices ranging from 1.06 to 1.67 and 
a median of 1.37 (Fig. 2F; a clustering index of 1 indicates zero 
clustering). These SF results replicate our previous data collected 
from different macaques with the same procedure (Guan et al. 
2021) and are consistent with earlier single-unit results showing 
an approximately two-octave SF tuning range in V1 neurons (De 
Valois et al. 1982) and weak or insignificant SF clustering (Edwards 
et al. 1995; DeAngelis et al. 1999). 

To determine the geometric relationships among orientation, 
OD, and SF maps, we first calculated the respective orientation, 
OD, and SF gradients for each target neuron in three types of func-
tional maps (Fig. 3A–C). Specifically, we located all neurons within 
a radius of 400 μm from a target neuron and defined vectors with 
the target neuron as the coinitial point and these nearby neurons 
as terminal points. For each pair of target and nearby neurons, the 
orientation/OD/SF vector magnitudes were the differences of their 
preferred orientations/ODs/SFs, respectively. We then summed 
the orientation/OD/SF vectors of all neuron pairs, respectively, 
with each vector normalized by the distance between the neu-
ron pair, as the target neuron’s orientation/OD/SF gradient (see 
Materials and Methods). The outcomes of gradient computation 
were largely stable and robust to changes for radii than 150 μm 
(Fig. 3D). 

It is evident that, within the same subarea of a specific FOV, 
there are often clustered gradient lines along one direction in one 

gradient map and an orthogonal direction in a different gradient 
map (e.g. the white-circled region in Ori and OD maps of Monkey 
A, Fig. 3), or along similar directions in a pair of gradient maps 
(e.g. the yellow-circled region in Ori and OD maps of Monkey A, 
Fig. 3). As a result, functional maps exhibit coexisting orthogonal 
and parallel relationships, as well as other pairings of intersection 
angles, which are quantified below. 

The intersection angles among the orientation, OD, and SF gra-
dients of each neuron were determined by the differences among 
the directions of these gradients. When necessary, the intersection 
angles were transformed to be within the range of 0o to 90o (see 
Materials and Methods, Fig. 4A–C). It is evident that there were no 
consistent concentrations of intersection angles between ORI and 
OD maps and between ORI and SF maps (Fig. 4D). Specifically, 
the intersection angles on average (weighted means) were flat 
(ORI-OD) or nearly flat with a few % difference between 0o and 
90o intersections (ORI-SF) (Fig. 4D). The intersections between SF-
OD maps appeared to be parallel more frequently, which was 
mainly contributed by two FOVs (with 10% more neurons having 
0o intersections than 90o intersections), while the other three 
FOVs showed flatter functions. Additional contour plots were also 
presented in Supplemental Fig. S1, in which additional data points 
were added to cellular functional maps using a natural neighbor 
interpolation method before each map was convolved by a 2D 
Gaussian (σ = 25 μm). These plots reveal no significant trends for 
orthogonal or parallel intersections either. 

Together, these cellular maps failed to display a structure 
in which the OD-ORI and ORI-SF relationships were predomi-
nantly orthogonal and the SF-OD relationship was predominantly 
parallel, as predicted by previous pixel-based functional maps. 
Furthermore, the intersection angles are clustered (Fig. 4E). This 
clustering was determined by the gradient maps. For example, 
when the orientation and OD gradients of neurons in a subarea 
of an FOV were respectively similar—often caused by similar 
orientation and OD preferences of these neurons, or by orientation 
and OD preferences varying at a similar rate—the intersection 
angles of orientation and OD maps in the same subarea were also 
similar and clustered. 

We refined the analysis in several ways to examine the above 
outcomes. First, to remove potential measurement errors and cell 
variances, we divided the 512 pixel × 512 pixel images into grids, 
each of which was 8 × 8, 16 × 16, or 32 × 32 pixels in size, and 
averaged the selectivity of neurons within each grid. The pat-
terns of intersection angles did not show any consistent patterns, 
especially no parallel or orthogonal concentrations, as shown in 
Supplemental Fig. S2, which displays exemplar maps of feature 
tunings, gradients, and intersection angles with grids of 32 × 32 
pixels. Second, because of the small image size and the blood 
vessel occlusion, the calculation of the gradient could be inaccu-
rate for neurons close to the edge of the image or to the vessels. 
We reperformed the calculations after removing these neurons 
and found basically unchanged results (Supplemental Fig. S3). 
Third, previously, Yu et al. (2005) reported that the orthogonal rela-
tionships were present at locations where the gradients of both 
the orientation and ocular dominance maps were within the top 
30th percentile. However, this trend was not evident in our data 
either when only the intersection angles of neurons with top 30 
percentile gradient values were considered (Supplemental Fig. S4). 

Pixel-based functional maps 
It is now critical to examine whether our functional maps, if pixel-
based, would reveal orthogonal or parallel relationships similar 
to those from previous studies, particularly from two-photon
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Fig. 2. Functional maps in macaque V1 superficial layers. A–C) Orientation, OD, and SF functional maps with each response FOV. The peak orientation, 
OD, and SF preferences of neurons define the values (colors) assigned in their respective parameter maps. All subsequent calculations were based on 
these maps. Only neurons with significant orientation, OD, or SF tunings are presented (OD maps of Monkeys C–E were regenerated slightly differently 
from the same data sets that have been used in a separate paper on binocular combination of monocular inputs; Zhang et al. 2024). D–F) Orientation, 
OD, and SF clustering. Each datum indicates the average clustering within a 50 μm bin up to the corresponding cortical distance on the x axis. The 
cluster indices are based on the first 50 μm bin (the leftmost data points). 

calcium imaging ones with a similar size of FOVs ( Nauhaus et al. 
2012; Nauhaus et al. 2016). Following the same procedures in 
these earlier studies (see Materials and Methods), we calculated 
each pixel’s orientation, OD, and SF preferences for a 512 pixel 
x 512 pixel image. We then constructed pixel functional maps 
with Gaussian filtering (σ = 25 μm) and thresholding (Fig. 5A); 
obtained orientation, OD, and SF gradient information of each 
pixel (Fig. 5B); and finally, calculated the intersection angles 
among maps (Fig. 5C). As summarized in Fig. 5D, slight trends 
of orthogonal (Ori-OD & SF-OD) or parallel (Ori-SF) intersections 
among maps were evident in some FOVs. 

When all the intersection values of all pixels from 5 FOVs 
were pooled together to simulate the large FOVs in ISOI studies, 
the overall Ori-OD, SF-OD, and Ori-SF intersections (vector sums) 
were 87.63o, 61.71o, and 20.41o, respectively, at a Gaussian σ of 
25 μm. However, the respective circular variances were very high 
(0.93, 0.94, and 0.84; a value of 1 indicates a completely even 

distribution), suggesting wide dispersions of vector values. These 
outcomes were largely stable for σ ≥ 15 μm (Fig. 6A) and  were  
largely consistent with previous pixel-based ISOI and two-photon 
imaging results (Hübener et al. 1997; Nauhaus et al. 2016) in terms  
of vector sums. Nevertheless, the high circular variances indicate 
that the near orthogonal or parallel intersections among maps, 
even if genuine, are highly variable. As for cellular functional 
maps, their geometric relationships after Gaussian smoothing 
varied greatly among individual FOVs (Fig. 6B), suggesting that the 
observed trends of Gaussian smoothing in pixel-based functional 
maps may not be directly related to cellular data. 

Discussion 
Our results fail to reveal a significant orthogonal relationship 
between orientation and OD functional maps at the cellular level,
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Fig. 3. Orientation, ocular dominance, and spatial frequency gradient maps. A) Orientation gradient maps. Each neuron’s gradient, which reflects the 
sum of respective distance-weighted vectors from it to all neurons within a radius of 400 μm, is represented by a vector bar. The bar length is normalized 
by the median length of all vector bars within the same FOV and indicates the vector magnitude. B, C) Ocular dominance and spatial frequency gradient 
maps. Each neuron’s ocular dominance or spatial frequency gradient was calculated in the same way. The circles highlight subareas where the gradient 
lines have orthogonal and parallel relationships between the orientation and ocular dominance maps, respectively. D) The orientation, OD, and SF 
gradients (the sum of all respective vectors) as a function of the radius of the covered area for gradient calculation. 

as would be predicted by the ice-cube model. Additionally, there 
is no significant evidence for orthogonal intersections between 
cellular orientation and SF maps, and there is a weak tendency 
toward parallelism between OD and SF maps in some but not 
all FOVs (  Fig. 4). The pixel-based function maps, on the other 
hand, suggest the presence of weak and highly variable trends 
of global orthogonal or parallel relationships among orientation, 
OD, and SF functional maps as a result of Gaussian smooth-
ing (Fig. 5). These weak trends may have been picked up by 
previous pixel-based optical imaging studies that cover larger 
FOVs (Fig. 6), especially when conclusions are drawn without 
considering high variations, which is typical in ISOI studies. Since 
no consistent effects of Gaussian smoothing are observed at 
the cellular level, the pixel-based results may not necessarily 
reflect the true relationships among the tuning properties of 
neurons. 

The ice-cube model assumes orthogonality between orien-
tation and OD functional maps for efficient neuronal wiring. 
However, such orthogonal distributions of intersection angles are 
unattainable among multiple functional maps. Thus, the widely 

distributed intersection angles may represent a useful compro-
mise, ensuring that no pair of stimulus features is represented by 
neurons with the least economic wiring (e.g. parallel intersections 
between maps). In particular, if OD and SF maps were parallel, an 
area multiple times the size of a hypercolumn would be necessary 
to fully represent both features. Instead, the current arrange-
ments allow V1 neurons in an area as small as a hypercolumn 
to completely represent multiple stimulus features, including 
additional features such as motion direction and disparity with no 
additional and conflicting requirements for orthogonal or parallel 
relationships among functional maps. 

The clustering of intersection angles appears to be a result of 
tuning clusters in functional maps. With horizontal displacement, 
clustered neurons change their stimulus preferences smoothly, 
leading to similar gradients of tuning changes. When this hap-
pens in the same subarea of two or three functional maps, the 
gradients in each map within this subarea are similar, and their 
intersections among maps are thus also similar, forming clusters 
of intersection angles. Whether this clustering of intersection 
angles represents any functional advantages is unclear, as is the
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Fig. 4. Geometric relationships among functional maps at cellular resolution. A–C) Maps of intersection angles. From top to bottom: orientation-OD 
map, orientation-SF map, and SF-OD map, respectively. Intersection angles were mapped from 0◦ to 90◦. D) Distributions of intersection angles. From 
left to right, orientation-OD map, orientation-SF map, and SF-OD map, respectively. E) Clustering of intersection angles among maps as a function of 
the cortical distance. 

original neuronal clustering in functional maps that eventually 
determines the clustering of intersection angles. V1 neurons in 
some animals are orientation selective but not spatially clus-
tered in terms of their orientation tuning, which prompted some 

researchers to conclude that neural clustering may not serve 
specific functions ( Horton and Adams 2005). 

The SF maps in five macaques show limited tuning ranges of 
medium and high spatial frequencies. Is it possible that SF and OD
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Fig. 5. Pixel-based functional maps. A, B) Pixel-based Gaussian-smoothened orientation (top), OD (middle), and SF (bottom) functional maps A) and 
gradient maps B) of Monkey A. C) The intersection maps of Monkey A. Top: The Ori-OD intersection map; middle: The Ori-SF intersection map; 
bottom: The SF-OD intersection map. D) The intersection maps of Monkey A plotted in contour lines. Plots for additional FOVs are presented in 
Supplemental Fig. S5. E) Distributions of intersection angles in three types of intersection maps for all monkeys. 

maps are actually parallel, as suggested by Nauhaus et al. (2016), 
but we missed areas representing low spatial frequencies because 
of limited FOV sampling? The medium and high SF presentations 
have been consistently found in six additional macaques in a 
previous study of ours using the same two-photon imaging tech-
nology and procedures, including cases where neighboring FOVs 
are imaged (Guan et al. 2021). Considering the sheer number (15) 
of recorded FOVs, the chance of such strong sampling biases is not 
very likely. 

A technical note: The exact RF size of each ROI was not mea-
sured in this study. Nonetheless, it is most likely that the identified 
neurons had their RFs overlapping with the stimulus, leading to 

significant responses. A recent study using two-photon imaging 
(Nauhaus et al. 2016) indicated that the RF scatter in V1 is about 
half of the original estimate by Hubel and Wiesel (1974). Our  own  
extensive RF mapping data in one macaque not involved in the 
current study also indicated that the RF scatters of superficial-
layer V1 neurons are very narrow (both vertical and horizontal 
standard deviations are <0.15◦) (Supplemental Fig. S6). Therefore, 
it’s likely that our measurements encompassed most neurons 
that could respond to the stimuli. Some neurons may not have 
aligned well with the stimulus, resulting in weak and orientation-
unspecific responses. These neurons would have been excluded 
during data analysis (see Materials and Methods).

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/12/bhae471/7917315 by N

ational Science & Technology Library user on 16 D
ecem

ber 2024

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae471#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae471#supplementary-data


10 | Cerebral Cortex, 2024, Vol. 34, No. 12

Fig. 6. The effects of Gaussian smoothing on geometric relationships among functional maps. A) Pixel-based functional maps. The upper panels show 
the intersection angles (vector sums) among maps in individual FOVs and the combined results. The lower panels show corresponding circular variance 
values. B) Cellular functional maps. Again, the upper panels display the intersection angles (vector sums) among maps in individual FOVs and the 
combined results, and the lower panels display corresponding circular variance values.
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