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Historically, in many perceptual learning experiments,
only a single stimulus is practiced, and learning is often
specific to the trained feature. Our prior work has
demonstrated that multi-stimulus learning (e.g.,
training-plus-exposure procedure) has the potential to
achieve generalization. Here, we investigated two
important characteristics of multi-stimulus learning,
namely, roving and feature variability, and their impacts
on multi-stimulus learning and generalization. We
adopted a feature detection task in which an oddly
oriented target bar differed by 16° from the background
bars. The stimulus onset asynchrony threshold between
the target and the mask was measured with a staircase
procedure. Observers were trained with four target
orientation search stimuli, either with a 5° deviation
(30°–35°–40°–45°) or with a 45° deviation
(30°–75°–120°–165°), and the four reference stimuli
were presented in a roving manner. The transfer of
learning to the swapped target–background orientations
was evaluated after training. We found that
multi-stimulus training with a 5° deviation resulted in
significant learning improvement, but learning failed to
transfer to the swapped target–background
orientations. In contrast, training with a 45° deviation
slowed learning but produced a significant
generalization to swapped orientations. Furthermore, a
modified training-plus-exposure procedure, in which
observers were trained with four orientation search
stimuli with a 5° deviation and simultaneously passively
exposed to orientations with high feature variability (45°
deviation), led to significant orientation learning
generalization. Learning transfer also occurred when the
four orientation search stimuli with a 5° deviation were
presented in separate blocks. These results help us to
specify the condition under which multistimuli learning
produces generalization, which holds potential for
real-world applications of perceptual learning, such as
vision rehabilitation and expert training.

Introduction

Visual perceptual learning refers to a long-term
performance improvement in visual tasks owing to
repeated practice (Lu & Dosher, 2022; Sagi, 2011;
Watanabe & Sasaki, 2015). Historically, in many
perceptual learning experiments, only a single stimulus
condition (e.g., a specific orientation) is practiced
and learning is often specific to the trained feature
and retinal location (Karni & Sagi, 1991). Taking
orientation discrimination learning as an example,
performance improvement does not transfer to
an untrained orthogonal orientation or untrained
retinal location (Schoups, Vogels, & Orban, 1995).
Such feature and location specificities coincide with
orientation selectivity and retinotopic representation
of the primary visual cortex (V1) (Hubel & Wiesel,
1959, Hubel & Wiesel, 1962), which has inspired
researchers to interpret perceptual learning as a result
of training-induced changes specific to the subset of
V1 neurons encoding the trained stimulus (Karni &
Sagi, 1991; Schoups et al., 1995; Teich & Qian, 2003) or
improved readout of early sensory signals specifically
activated by the trained stimulus (Dosher & Lu, 1998;
Law & Gold, 2008).

However, specificity is a potential problem for
practical settings and thus researchers have been
heavily invested in exploring methods to overcome this
obstacle. Growing research has shown that the degree
of learning specificity is influenced by a diversity of
factors, such as task difficulty or precision (Ahissar
& Hochstein, 1997; Jeter, Dosher, Petrov, & Lu,
2009; Liu, 1999), training amount (Aberg, Tartaglia,
& Herzog, 2009; Jeter, Dosher, Liu, & Lu, 2010),
stimulus complexity (Bakhtiari, Awada, & Pack, 2020;
McGovern, Webb, & Peirce, 2012), state of adaptation
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(Harris, Gliksberg, & Sagi, 2012), spatial attention
(Donovan & Carrasco, 2018; Donovan, Szpiro, &
Carrasco, 2015), training task and psychophysical
methods (Green, Kattner, Siegel, Kersten, & Schrater,
2015; Xiong, Xie, & Yu, 2016), and feature reliability
(Yashar & Denison, 2017). For example, in a seminal
work by Ahissar and Hochstein (1997), training
on an odd-element detection task leads to either
orientation-specific or orientation-general learning,
depending on the difficulty of the training conditions.
Training with odd elements that differed from the
background elements slightly (e.g., by 16°, a hard task)
leads to much more specific learning. In contrast,
training with odd elements that differed greatly from the
background elements (e.g., by 90°, an easy task) leads
to a significant generalization of learning. It should
be noted that Ahissar and Hochstein (1997) used the
method of constant stimuli to calculate stimulus onset
asynchrony (SOA) thresholds with a single-interval
(yes/no) procedure. Later, the orientation specificity in
feature detection learning was replicated with different
threshold measurements, such as, a single interval
adaptive (staircase) procedure (Zhang et al., 2010), or
with signal detection measures (Yashar & Denison,
2017). The reverse hierarchy theory, which states that
learning starts in higher visual areas and only shifts to
lower visual areas if the higher visual areas are unable
to complete the task, has been proposed to explain the
specificity and transfer in perceptual learning (Ahissar
& Hochstein, 1997, Ahissar & Hochstein, 2004).

Significant and complete learning transfer across
retinal locations or stimuli features have also been
demonstrated with novel training paradigms in our
serial studies (Hu, Wen, Chen, & Yu, 2021; Wang,
Zhang, Klein, Levi, & Yu, 2012; Wang, Zhang, Klein,
Levi, & Yu, 2014; Xiao et al., 2008; Xiong, Zhang, &
Yu, 2016; Zhang & Yang, 2014; Zhang et al., 2010).
Using a double training paradigm and its variation,
a training-plus-exposure (TPE) paradigm, in which
observers are trained at one location/orientation in
tasks known to be location/orientation-specific and
either simultaneously or subsequently passively exposed
to the transfer location/orientation in an irrelevant
task, perceptual learning can completely transfer
to the untrained location/orientation. For example,
we showed that the TPE procedure could override
orientation specificity in a feature-detection learning
originally reported by Ahissar and Hochstein (1997).
These results challenge the existing specific perceptual
learning models by suggesting a more general perceptual
learning process. Learning specificity might result from
underactivations of untrained visual neurons due to
insufficient bottom-up stimulation and/or top-down
attention during training (Xiong, Zhang et al., 2016).
Furthermore, TPE results demonstrate that the learning
transfer between physically distinct orientation or
motion stimuli is mutual and complete, suggesting that

perceptual learning can take place at a conceptual level
(Wang et al., 2016). Similarly, Kattner, Cochrane, Cox,
Gorman, and Green (2017) demonstrate that training
on a series of tasks sharing common components
can induce the transfer of learning to new tasks with
similar components, not as immediate performance
improvement, but as an increase in learning rate—a
capability that has been dubbed “learning to learn”
(Bavelier, Green, Pouget, & Schrater, 2012; Bejjanki et
al., 2014; Braun, Mehring, & Wolpert, 2010). These
findings support the hypothesis that perceptual learning
occurs at a conceptual level where observers learn
abstract rules that can be applied to novel features
(Wang et al., 2016).

We usually have to face situations with multiple
stimuli in daily life, not just with one limited stimulus. A
significant factor in multi-stimulus learning is stimulus
presentation order. Earlier we demonstrated that when
trained with basic stimulus features (e.g., contrast,
orientation, motion direction), observers show learning
effects when multiple stimuli (e.g., four contrasts: 20%,
30%, 47%, and 63%) are presented in a fixed order,
but not in a random order (roving) (Kuai, Zhang,
Klein, Levi, & Yu, 2005; Yu, Klein, & Levi, 2004;
Zhang et al., 2008). Interestingly, perceptual learning
can escape roving disruption when the roving stimuli
are sufficiently different (Dosher, Liu, Chu, & Lu,
2020; Tartaglia, Aberg, & Herzog, 2009; Zhang et al.,
2008) or tagged with semantic sequence information
(Cong & Zhang, 2014). Roving interference is also
evident in auditory learning (Amitay, Hawkey, &
Moore, 2005; Nahum, Nelken, & Ahissar, 2010). For
example, Amitay et al. (2005) reported that a small
degree of roving interferes with learning, but a larger
degree of roving does not. Nahum et al. (2010) also
showed that learning with complex speech stimuli is
affected by stimulus variability during training. Such
interference can also be avoided when multiple stimuli
are presented in a temporal sequence. We propose that,
for multi-stimulus learning to occur, the brain needs to
conceptually “tag” each stimulus, to switch attention
to the appropriate perceptual template (Zhang et al.,
2008). However, the previous studies have been based
on basic stimulus features, it remains unclear whether
roving affects multi-stimulus learning in relatively
complex visual tasks, such as the previously mentioned
feature detection task.

More significantly, variability can also influence
the generalization of multistimulus learning (Raviv,
Lupyan, & Green, 2022). Recent training regimes
that utilize rich stimulus sets, such as multi-stimulus
training (Manenti, Dizaji, & Schwiedrzik, 2023; Xie &
Yu, 2020) and off-the-shelf video games encompassing
a diverse set of stimulus properties (Deveau, Lovcik,
& Seitz, 2014; Deveau & Seitz, 2014), show greater
generalization of learning compared with training
procedures using a single stimulus. In these studies,
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there are two intertwined sources of variability,
numerosity (set size, such as when learning from more
or fewer distinct examples) and heterogeneity or feature
variability (differences between examples). Although
numerosity is often taken as a proxy for feature
variability, with increased numerosity usually indicating
greater feature variability between stimuli (Arnold &
Auvray, 2018), these two sources of variability do not
necessarily have to align. A few studies have attempted
to experimentally tease the two sources of variability
apart to explore their relative roles in multi-stimulus
learning generalization (Bowman & Zeithamova, 2020;
Poletiek & van Schijndel, 2009; Schiff, Ashkenazi,
Kahta, & Sasson, 2021). For example, in grammar
learning, it has been found that the main predictor
of generalization is the diversity of the stimulus set
used in the training phase and its statistical coverage
of the grammar, but not the mere size of the set
(Poletiek & van Schijndel, 2009; Schiff et al., 2021).
Similarly, in category learning, high set coherence
leads to better generalization, whereas set size has little
effect (Bowman & Zeithamova, 2020). However, in the
domain of visual perceptual learning, there remains a
lack of evidence to clarify the relative contribution of
numerosity and feature variability to multi-stimulus
learning generalization.

Here we adopted a feature detection task in which
target odd elements differed from the background
elements by 16° (hard task as in Ahissar & Hochstein,
1997). We also adopted the single interval staircase
procedure to measure the SOA threshold as in our
previous study (Zhang et al., 2010). In the current
study, observers were trained with multiple target
orientation search stimuli presented in a roving or block
manner. After training, the transfer of learning to the
swapped target–background orientations was evaluated.
Additionally, we manipulated the feature variability
(the deviation between two levels of a feature) by
changing the deviation of four orientation search
stimuli: either with a 5° deviation (30°–35°–40°–45°)
or with a 45° deviation (30°–75°–120°–165°). We aimed
to investigate two primary questions. First, we sought
to understand whether roving prevents learning from
occurring in a relatively complex visual task, a feature
detection task. Second, we tried to clarify the relative
contribution of numerosity and feature variability
to multi-stimulus learning generalization. Our results
showed that learning multiple feature stimuli in a
roving way did not prevent learning from occurring.
Interestingly, multi-stimulus learning with high feature
variability (45° deviation) showed much more learning
transfer to the swapped orientations than that with
low feature variability (5° deviation) (Conditions 1 and
2). For the 5° deviation condition, learning transfer
occurred when observers were passively exposed to
orientations with high feature variability (Condition
3) or when different reference stimuli were presented

in separate blocks (Condition 4). These results help us
to specify the condition under which multi-stimulus
learning produces generalization, which is particularly
important for real-world applications of perceptual
learning, such as vision rehabilitation and expert
training.

Methods

Observers and apparatus

A total of 32 observers (undergraduate students in
their early 20s) with normal or corrected-to-normal
vision participated in this study. All were inexperienced
in psychophysical experiments and were unaware of the
purposes of the study. This study was approved by the
Peking University Institution Review Board. Informed
consent was obtained from each observer before
testing.

The stimuli were generated with Psychtoolbox-3
software (Pelli, 1997) and presented on a 21-inch
Sony G520 color monitor (1024 × 768 pixels; 0.37 ×
0.37 mm per pixel; 120 Hz frame rate; 50 cd/m2 mean
luminance). A chin and head rest helped to stabilize
the head of an observer. The viewing was binocular at
a distance of 2 m. Experiments were run in a dimly
lit room. Responses were collected via the computer
keyboard.

Stimuli and procedure

The feature detection task mainly consisted of
a search stimulus and mask stimulus, which were
similar to those used by Ahissar and Hochstein (1997)
(Figure 1a). The search stimulus was a bar array.
The array consisted of 7 × 7 white bars (22.2 ×
1.3 arcmin each) with an interbar distance of 42.5
± 3.9 arcmin. In one-half of the trials, the search
stimulus was composed of target and background
orientations. The target was an oddly oriented bar
placed at either the second or the sixth bar location
of the middle row of the array. The background
was other uniformly oriented bars. The target always
differed from the background by 16°. In the other
one-half of the trials, the search stimulus included
only background orientation with all 7 × 7 white
bars uniformly oriented. The search stimulus was
followed, at various SOAs, by a mask stimulus that
was also a 7 × 7 array, with each element containing
one pair of white bars oriented at the target and
background orientations, and the other pair rotated by
90°.

The feature detection threshold was measured with a
single interval staircase procedure, which was adopted
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Mask
Background 30°

Target 46°

a b

Swapped orientation  SOA

Background 46°
Target 30°

c
Session 1

Blocks
Pre-test Post-test

trained ori
swapped ori

 1                 6                    12                    18                    24                   30         33 34   36   

Trained orientation

Experimental schedule

Session 2 Session 3 Session 4 Session 5 Session 6

Figure 1. Stimuli and experimental schedule. (a) Stimulus configuration of the feature detection task at trained target–background
orientations (46° vs 30°) and mask. The odd element (target) could appear at one of two positions (indicated by red circles that were
not present in the actual stimuli). The dashed circle indicates the target. (b) Stimulus at untrained target–background swapped
orientations (30° vs 46°). The red circle was not present in the actual stimulus. The dashed circle indicates the target. (c) Experiments
were conducted over six sessions, with one session per day. Each session comprised 6 blocks, resulting in a total of 36 blocks.
Observers experienced a pretest with the orientations to be trained (block 1), followed by additional practice blocks until the post-test
of the trained orientations (block 33) in session 6. Subsequently, observers were immediately tested with the swapped orientations in
block 34 and continued practicing the swapped orientations for two additional blocks (blocks 35–36) to assess further improvements.

from our previous study (Zhang et al., 2010). Each
trial started with a 200-ms fixation display followed
by the presentation of the search stimulus for 8.3 ms,
which was followed by a 92-ms mask stimulus display
(e.g., Figure 1a). SOA between the search stimulus and
the mask stimulus was variable. Following the mask
stimulus, the screen went blank until the observer made
a response. Observers were asked to report whether the
search stimulus array contained an odd element (50%
trials) by pressing one of two designated keyboard
keys (1 for present and 2 for absent). Observers were

instructed to respond as accurately as possible without
speed stress. The intertrial interval was 500 ms. To
maintain consistency in data collection, auditory
feedback was provided immediately after incorrect
responses throughout the entire experiment (including
training and test sessions), which was consistent with
Ahissar and Hochstein (1997).

A classical three-down-one-up staircase rule that
resulted in a 79.4% convergence level was used to
measure the feature detection threshold. The initial
SOA values were sufficiently large that the observers
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Orientation deviation Presentation order Training paradigm

Condition 1 5° deviation Roving Training
Condition 2 45° deviation Roving Training
Condition 3 5° deviation Roving Training plus exposure
Condition 4 5° deviation Block Training

Table 1. Study design. The key differences between the four training conditions exist in the orientation deviation of the four
orientation search stimuli, the presentation order of the four orientation search stimuli, and the training paradigm.

could always make a correct discrimination. The
step size of the staircase was 0.05 log units. Each
staircase consisted of four preliminary reversals and six
experimental reversals. A reversal occurs if the stimulus
value moves up when it was last moved down, or vice
versa. The geometric mean of the six experimental
reversals was taken as the threshold for each staircase
run.

Experimental design

This study consisted of four training conditions
conducted in separate groups of observers. In all
four training conditions, with a limited number of
exceptions noted below, observers underwent six
sessions, with each session consisting of six blocks
(Figure 1c). Each session was conducted on a separate
day and lasted approximately 1.0 to 1.5 hours. During
the training phase, observers repeatedly practiced 4
different orientation search stimuli for 33 blocks, with
each block comprising 4 staircases measuring the
SOA threshold of the 4 different orientation search
stimuli respectively. Subsequently, from block 34 to
block 36, observers experienced transfer blocks, in
which target–background orientations were swapped,
for example, searching a 46° target among a 30°
background in previous training blocks became
searching a 30° target among a 46° background in
transfer blocks (Figure 1b). We considered the estimates
from block 1, block 33, and block 34 as the pretest,
post-test for the trained orientations, and post-test for
the swapped orientations, respectively.

Previous research has demonstrated the existence of
orientation search asymmetry, where observers have an
advantage in detecting oblique targets among cardinal
or near-cardinal distractors over the reverse scenario
(Yashar & Denison, 2017). In the current study,
we balanced possible orientation search asymmetry
between training and transfer among observers.
This was achieved by assigning some observers’
trained orientations as swapped orientations for other
observers, and vice versa.

The key differences between the four training
conditions existed in terms of orientation deviation,
presentation order, and training paradigm (Table 1).
In Condition 1, observers experienced four orientation

search stimuli whose background orientations were
30°, 35°, 40°, and 45°, respectively, with a 5° deviation
(Figure 2a). The four orientation search stimuli were
run randomly interleaved every trial (roving). Condition
2 was the same as the Condition 1, except that observers
experienced four orientation search stimuli whose
background orientations were 30°, 75°, 120°, and 165°,
respectively, with a 45° deviation (Figure 3a).

Condition 3 was the same as Condition 1, except
that during the second to the fifth sessions, each
block of feature detection task was followed by a
block of exposure task, which was called a TPE
procedure (Zhang et al., 2010). In the exposure task,
the observers were exposed to the four background
orientations with a 45° deviation (30°, 75°, 120°,
and 165°) at an SOA fixed at 500 ms, which was
near the average pretraining threshold. The exposure
task required observers to judge whether the stimuli
were bars (uniformly oriented at the background
orientations without the odd element presented in 80%
of trials) or circles (20% of trials) in each 60-trial block
(Figure 4a).

Condition 4 was the same as Condition 1, except that
the four orientation search stimuli were presented in
separate blocks. Specifically, each block contained four
mini-blocks of trials, with each mini-block running an
orientation search stimulus separately using a staircase,
and the four mini-blocks proceeded in ascending order
according to their assigned orientations (30°, 35°, 40°,
and 45°).

Statistical analyses

The learning and transfer effects were measured
by the percent threshold improvements from pretest
to post-test sessions, that is, 100% × (Thresholdpre –
Thresholdpost)/Thresholdpre. Individual improvements
were first calculated and then averaged to yield the mean
percent improvement (MPI). Threshold improvements
were compared against the value 0 with a one-sample
t-test. Threshold improvements between training
and transfer within a group were compared with a
two-tailed paired t test. Threshold improvements across
conditions were compared with a one-way ANOVA
(analysis of variance).
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Figure 2. Condition 1: Perceptual learning of four orientation search stimuli with 5° deviation in roving order. (a) Stimuli: Four
orientation search stimuli whose background orientations are 30°, 35°, 40°, and 45°, respectively, with a 5° deviation. Letters ‘B’ and
‘T’ represent background and target orientation, respectively. (b) Block-by-block SOA threshold changes at the training (black
triangles) and transfer (red circles) orientations. The smooth curve shows exponential function fits. The SOA threshold of each block is
averaged from four orientation search stimuli. Sessions 1 through 6 denoted as S1 through S6 are separated visually by light lines,
with each session consisting of six blocks. (c) Mean percent improvement (bars) and individual percent improvements (circles) at
trained and swapped orientations, respectively. The dashed line connected the data from the same observer. (d) (Left) Post-training
versus pretraining SOA thresholds at four trained orientations. (Right) Post-test SOA thresholds at four swapped target–background
orientations versus pretraining SOA thresholds at four trained target–background orientations. Solid and hollow symbols represent
different trained or swapped orientations. The y-axes show SOA thresholds on a logarithmic scale. Error bars indicate 1 standard error
of the mean. SOA, stimulus onset asynchrony.

Results

Condition 1: Perceptual learning of four
orientation search stimuli with a 5° deviation in
roving order

To investigate the impact of roving on multi-stimulus
learning in a relatively complex visual task and the

role of feature variability in learning and transfer,
we first had eight observers practice four orientation
search stimuli, each deviating by 5° in a roving order
(Figure 2a). Considering the complexity of the visual
search task, we hypothesized that roving might not
impede the occurrence of multi-stimulus learning.
Furthermore, we suspected that learning with a 5°
deviation between the orientation search stimuli, akin
to learning with a single orientation search stimulus in
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Figure 3. Condition 2. Perceptual learning of four orientation search stimuli with 45° deviation in roving order. (a) Stimuli: Four
orientation search stimuli whose background orientations are 30°, 75°, 120°, and 165°, respectively, with a 45° deviation. Letters ‘B’
and ‘T’ represent background and target orientation, respectively. (b) Block-by-block SOA threshold changes at the training (black
triangles) and transfer (red circles) orientations. The smooth curve shows exponential function fits. The SOA threshold of each block is
averaged from four orientation search stimuli. Sessions 1 through 6 denoted as S1 through S6 are separated visually by light lines,
with each session consisting of six blocks. (c) Mean percent improvement (bars) and individual percent improvements (circles) at
trained and swapped orientations, respectively. The dashed line connected the data from the same observer. (d) (Left) Post-training
versus pretraining SOA thresholds at four trained orientations. (Right) Post-test SOA thresholds at four swapped target–background
orientations versus pretraining SOA thresholds at four trained target–background orientations. Solid and hollow symbols represent
different trained or swapped orientations. The y-axes show SOA thresholds on a logarithmic scale. Error bars indicate 1 standard error
of the mean. SOA, stimulus onset asynchrony.

the seminal research by Ahissar and Hochstein (1997),
would lead to orientation specificity.

Figure 2b shows the changes in block-by-block
SOA thresholds, which were averaged from the SOA
thresholds of four orientation search stimuli across
observers. It is noted that there was no pretest at the
swapped target–background orientations as in the study

of Ahissar and Hochstein (1997), so pretest thresholds
at the trained target–background orientations were
also regarded as pretest thresholds at swapped
target–background orientations. The average thresholds
of eight observers at the pretest of trained orientations,
post-test of trained orientations, and post-test
of swapped orientations were 384.2 ± 116.7 ms,
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Figure 4. Condition 3. Perceptual learning of four roving orientation search stimuli with 5° deviation under the training-plus-exposure
(TPE) procedure. (a) Stimuli for exposure task: uniform stimulus array containing background orientations only or containing circles
for the bars or circles judgment. Observers are exposed to four background orientations with 45° deviation (e.g., 30°, 75°, 120°, 165°).
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(circles) at trained and swapped orientations, respectively. The dashed line connected the data from the same observer. (d) (Left)
Post-versus pretraining SOA thresholds at four trained orientations. (Right) Post-test SOA thresholds at four swapped
target–background orientations versus pretraining SOA thresholds at four trained target–background orientations. Solid and hollow
symbols represent different trained or swapped orientations. The y-axes show SOA thresholds on a logarithmic scale. Error bars
indicate 1 standard error of the mean. SOA, stimulus onset asynchrony.

76.2 ± 18.5 ms, and 340.1 ± 80.9 ms, respectively
(Figure 2b).

To quantify the learning rate, we used an
exponential function y = y0 − a (1 − e− x/τ ) to fit
the training-induced change of threshold (smooth
curve in Figure 2b), where x was the training block,
y0 was the threshold at x = 0, a was the asymptotic

threshold with sufficient training, and τ was the time
constant corresponding with the training time needed
to reach 63% of asymptotic performance (Levi, Li,
Silver, & Chung, 2020; Li, Ngo, Nguyen, & Levi,
2011). The time constant was 8.4 blocks, indicating a
relatively fast learning process. Figure 2d shows the
comparisons of the post-training versus pretraining
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and the comparisons of swapped versus pretraining
SOA thresholds, respectively, for all observers, which
were presented in a scatterplot along a unit slope line
(x = y) and each point reflected one orientation search
stimulus for each observer. If data points accumulated
under the line, then SOA thresholds were lower at the
post-test than at the pretest, indicating obvious learning
or transfer.

Figure 2c shows MPI for eight observers and
individual percent improvements on trained and
swapped orientations respectively. Significant learning
for the trained orientations were obtained after training,
as the threshold improvements were significantly higher
than zero (Figure 2c), MPI_trained = 79.2 ± 3.6%,
t7 = 21.71, p < 0.001, Cohen’s d = 7.68. These results
suggested that perceptual learning was evident when
four orientation search stimuli with a 5° deviation
were practiced in a roving order. However, the percent
threshold improvements of swapped orientations
were insignificantly different from zero (Figure 2c),
MPI_swapped = 10.5 ± 12.7%, t7 = 0.83, p = 0.43,
Cohen’s d = 0.29, and were significantly lower than that
of trained orientations (Figure 2c), t7 = 5.59, p < 0.001,
Cohen’s d = 1.98, indicating that learning was mostly
orientation specific.

Although learning did not show direct transfer to
the swapped orientations from the very first block
(block 34), the change rate for the three blocks of
swapped orientations (blocks 34–36) in session 6 tended
to be faster than the change rate for the first three
blocks of trained orientations in session 1 (Figure 2b).
Continued training of the swapped orientations
produced enormous improvements (Figure 2b),
MPI_block 36/block 34 = 30.8 ± 12.7%, t7 = 2.43, p = 0.046,
Cohen’s d = 0.86; in contrast, the initial training of the
trained orientations at the first three blocks produced
fewer improvements, MPI_block 3/block 1 = 8.9 ± 12.4%,
t7 = 0.71, p = 0.50, Cohen’s d = 0.25. These results
indicated increases in the learning rate rather than
immediate performance improvement for the swapped
orientations, which has been referred to as the learning
to learn form of generalization (Bavelier et al., 2012;
Kattner et al., 2017).

Condition 2: Perceptual learning of four roving
orientation search stimuli with a 45° deviation

Previous studies showed that the escape of roving
disruption in multi-stimulus learning depended on
variability/similarity between stimuli, with high
variability but not low variability free from roving
disruption (Dosher et al., 2020; Zhang et al., 2008). We
predicted that high feature variability would promote
generalization in multi-stimulus learning in the current
study. Another eight observers were trained with
four orientation search stimuli whose background

orientations were 30°, 75°, 120°, and 165°, respectively,
with a 45° deviation (Figure 3a). Figure 3b shows the
changes in block-by-block SOA thresholds. The average
thresholds of the eight observers at the pretest, post-test
of trained orientations, and swapped orientations were
548.9 ± 68.5 ms, 155.5 ± 20.8 ms, and 169.3 ± 29.8 ms,
respectively (Figure 3b). An exponential fit y = y0 − a
(1 − e − x/τ ) to the data revealed time constants (τ ) of
16.6 blocks, indicating a relatively slow learning process
compared with Condition 1 whose time constant (τ )
was 8.4 blocks.

Significant learning for the trained orientations
was obtained after training, as the percent threshold
improvements were significantly higher than zero
(Figure 3c), MPI_trained = 73.4 ± 1.9%, t7 = 39.49,
p < 0.001, Cohen’s d = 13.96. Besides, an independent
sample t-test revealed that threshold improvements
in this condition were not significantly different from
those in Condition 1, t14 = 1.42, p = 0.18, Cohen’s
d = 0.71, indicating that feature variability might not
affect the learning amount of muti-stimulus learning.
The threshold improvements of swapped orientations
were also significantly different from zero (Figure 3c),
MPI_swapped = 68.3 ± 5.4%, t7 = 12.63, p < 0.001,
Cohen’s d = 4.47, and were insignificantly different
from that of trained orientations (Figure 3c), t7 = 0.88,
p = 0.41, Cohen’s d = 0.31, indicating that learning
was completely orientation transferable. Continued
training of the swapped orientations produced
insignificant further improvements (Figure 3b),
MPI_block 36/block 34 = 11.0 ± 10.4%, t7 = 1.06, p = 0.33,
Cohen’s d = 0.37, confirming complete improvements
of the swapped orientations.

Figure 3d shows the comparisons of the post-
versus pretraining and the comparisons of swapped
versus pretraining SOA thresholds respectively for all
observers. Interestingly, we observed that the detection
of an oblique target against cardinal backgrounds (e.g.,
B91°/T75° or B181°/T165°) was more efficient than the
reverse scenario (e.g., B75°/T91° or B165°/T181°), as
the orientation search asymmetry reported by Yashar
and Denison (2017). Specifically, three observers
trained with B91°/T75° or B181°/T165° showed
little transfer to the swapped situations B75°/T91°
or B165°/T181°, Thresholdpre_ B91°/T75° = 254.7
± 27.8 ms, Thresholdpost_ B91°/T75° = 57.0 ±
10.4 ms, Thresholdswapped_ B75°/T91° = 189.7 ±
49.7 ms; Thresholdpre_ B181°/T165° = 410.0 ±
142.1 ms, Thresholdpost_ B181°/T165° = 54.3 ±
18.8 ms, Thresholdswapped_ B165°/T181° = 400.0 ±
42.6 ms. Conversely, five observers trained with
B75°/T91° or B165°/T181° showed complete
transfer to the swapped situations B91°/T75° or
B181°/T165°, Thresholdpre_ B75°/T91° = 491.3 ±
66.3 ms, Thresholdpost_ B75°/T91° = 199.2 ± 37.9 ms,
Thresholdswapped_ B91°/T75° = 118.9 ± 37.4 ms;
Thresholdpre_ B165°/T181° = 793.0 ± 205.4 ms,
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Thresholdpost_ B165°/T181° = 185.6 ± 52.0 ms,
Thresholdswapped_ B181°/T165° = 118.2 ± 36.2 ms. These
results confirmed the results reported by Yashar and
Denison (2017), showing the transfer depending on the
orientation of the target, with full transfer of learning
from near-cardinal to oblique targets, but not the
reverse.

To exclude the possibility that transfer of learning
in 45° deviation (Condition 2) and specificity in 5°
deviation (Condition 1) was not due to learning with
different deviations, but was due to that swapped
orientation in 45° deviation was easier to transfer
than that in 5° deviation, we had four observers in 45°
deviation perform the untrained 5° deviation condition
besides the swapped orientations during the post-test
session. Their thresholds in untrained 5° deviation
condition (average = 143.9 ± 24.6 ms) were not
significantly different from their thresholds of trained
orientations (average = 178.8 ± 21.6 ms), because
their percent threshold improvements in untrained 5°
deviation condition were insignificantly different from
that of trained orientations, MPI_5° deviation = 78.4 ±
1.3%, MPI_trained = 72.7 ± 2.1%, t3 = 2.18, p = 0.12,
Cohen’s d = 1.09, indicating that learning for 45°
deviation condition could also transfer to a 5° deviation
condition. Therefore, it was the learning with different
deviations but not the transfer test with different
deviations that led to different transfer effects.

Condition 3: The TPE procedure may alleviate
the learning specificity of four roving
orientation search stimuli with a 5° deviation

Previously, we have demonstrated that using a TPE
procedure, in which observers were trained at one
orientation and either simultaneously or subsequently
passively exposed to the untrained orientation with
an irrelevant task, perceptual learning completely
transferred to the untrained orientation in tasks known
to be orientation specific (Zhang et al., 2010). We
expected that passive exposure to high-variability
features would facilitate low-variability feature learning
transfer to untrained orientations. In Condition 3, we
adopted a modified TPE procedure, in which observers
were trained with four orientation search stimuli with 5°
deviation in a roving order and simultaneously passively
exposed to orientations with 45° feature variability, to
see whether the orientation specificity in a 5° deviation
condition as Condition 1 showed could be eliminated.

Eight new observers were trained with four
orientation search stimuli in the 5° deviation condition
in a roving way as in Condition 1 (background
orientations were 30°, 35°, 40°, and 45°). Besides,
they were simultaneously exposed to four background
orientations with 45° deviation (e.g., 30°, 75°, 120°,
and 165°) in alternative blocks. In the exposure task,
the observers were asked to judge whether the stimuli

were bars (uniformly oriented at the background
orientations without the odd element presented in 80%
of trials) or circles (20% of trials) in each 60-trial block
(Figure 4a). The TPE procedure was performed in
the same session from the second to the fifth session.
Changes in block-by-block SOA thresholds are shown
in Figure 4b. The average thresholds of eight observers
at the pretest, post-test of trained orientations, and
swapped orientations were 454.8 ± 55.6 ms, 83.0 ±
24.6 ms, and 159.0 ± 43.0 ms, respectively (Figure 4b).
An exponential fit y = y0 − a (1 − e − x/τ ) to the data
revealed time constants (τ ) of 14.9 blocks, indicating a
relatively slow learning process. Figure 4d shows the
comparisons of the post-training versus pretraining
and the comparisons of swapped versus pretraining
SOA thresholds, respectively, for all observers.

Significant learning for the trained orientations was
obtained after training, as the threshold improvements
were significantly greater than zero (Figure 4c),
MPI_trained = 83.4 ± 3.1%; t7 = 26.70, p < 0.001,
Cohen’s d = 9.44. Meanwhile, the accuracy of the
exposure task was always near 100%, indicating that
observers performed well in the exposure task. The
threshold improvements of swapped orientations
were also significantly different from zero (Figure 4c),
MPI_swapped = 68.3 ± 5.9%, t7 = 11.48, p < 0.001,
Cohen’s d= 4.06, but were significantly lower than those
of trained orientations (Figure 4c), t7 = 2.86, p = 0.024,
Cohen’s d = 1.01, indicating that the learning effect
showed incomplete transfer to the swapped orientations
with themodified TPE procedure. Continued training of
the swapped orientations produced insignificant further
improvements (Figure 4b), MPI_block 36/block 34 = 12.4
± 8.9%, t7 = 1.40, p = 0.21, Cohen’s d = 0.49,
suggesting substantial learning transfer to the swapped
orientations has occurred after the TPE training.

Condition 4: Perceptual learning of four
orientation search stimuli with a 5° deviation in
a blocked condition

Previous studies have shown that learning occurred
when multiple stimuli were presented in a fixed order,
but not in a random order (roving) (Kuai et al.,
2005; Yu, Klein, & Levi, 2004; Zhang et al., 2008). In
addition, it has been shown that training schedules,
such as when learning from the same examples,
but under more or less varied practice schedules,
had an impact on learning and transfer (Raviv et
al., 2022). Training with four roving orientations
with a 5° deviation in Condition 1 might contain
cross-trial uncertainty. Such uncertainty might be
available and even become stronger at the swapped
target–background orientations, leading to orientation
specificity. We speculated that the presentation of
fixed order might reduce the cross-trial uncertainty
and increase the feature variability. Therefore, training
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Figure 5. Condition 4. Perceptual learning of four orientation search stimuli with 5°deviation in a blocked design. (a) Block-by-block
SOA threshold changes at the training (black triangles) and transfer (red circles) orientations. The smooth curve shows exponential
function fits. The SOA threshold of each block is averaged from four orientation search stimuli. Sessions 1 through 6 denoted as S1
through S6 are separated visually by light lines, with each session consisting of six blocks. (b) Mean percent improvement (bars) and
individual percent improvements (circles) at trained and swapped orientations, respectively. The dashed line connected the data from
the same observer. (c) (Left) Post-training versus pretraining SOA thresholds at four trained orientations. (Right) Post-test SOA
thresholds at four swapped target–background orientations versus pretraining SOA thresholds at four trained target–background
orientations. Solid and hollow symbols represent different trained or swapped orientations. The y axes show SOA thresholds on a
logarithmic scale. Error bars indicate 1 standard error of the mean. SOA, stimulus onset asynchrony.

with four orientations in a fixed order would facilitate
the learning transfer to swapped target–background
orientations.

We had eight new observers practice four orientation
search stimuli with a 5° deviation in a blocked

condition. Each experimental block contained four
min-blocks of trials (or four staircases) for four
background orientations (30°, 35°, 40°, and 45°)
measured in ascending order. The block-by-block SOA
threshold changes were shown in Figure 5a. The average
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Figure 6. Learning and transfer of a common orientation search stimulus across four conditions. Mean percent improvement (bars)
and individual percent improvements (circles) at trained and swapped orientations, respectively.

thresholds of eight observers at the pretest, post-test
of trained orientations and swapped orientations were
428.0 ± 59.1 ms, 116.0 ± 14.7 ms, and 148.5 ± 22.6 ms,
respectively. An exponential fit y = y0 – a (1 – e– x/τ )
to the data revealed time constants (τ ) of 5.1 blocks,
indicating a fast learning process (Figure 5a). Figure 5c
shows the comparisons of the post-training versus
pretraining and the comparisons of swapped versus
pretraining SOA thresholds, respectively, for all
observers.

Significant learning for trained orientations was
obtained after training, as the percent threshold
improvements were significantly higher than zero
(Figure 5b), MPI_trained = 67.3 ± 6.2%; t7 = 10.79,
p < 0.001, Cohen’s d = 3.82. The threshold
improvements of swapped orientations were also
significantly different from zero (Figure 5b),
MPI_swapped = 59.1 ± 7.7%, t7 = 7.71, p < 0.001,
Cohen’s d = 2.73, and were insignificantly different
from that of trained orientations (Figure 5b), t7 = 1.62,
p = 0.15, Cohen’s d = 0.57, indicating that the
learning effects transfer to the swapped orientations.
Continued training of the swapped orientations
did not produce further improvements (Figure 5a),
MPI_block 36/block 34 = –7.3 ± 15.3%, t7 = –0.48, p = 0.65,
Cohen’s d = –0.17, confirming that complete learning
transfer to the swapped orientations has occurred after
training.

Summary: Comparing the same orientation
search stimulus across four conditions

For better cross-condition comparison of learning
and transfer, we separately analyzed the same
orientation search stimulus (B30°/T46° or B46°/T30°)
across four conditions. This orientation search stimulus
does not include cardinal orientation, which could
avoid the impact of orientation search asymmetry
on learning transfer. Although percent threshold
improvements at the trained orientation in Condition
2 seemed slightly lower, a one-way ANOVA indicated
that improvements across the four conditions did not
differ significantly (Figure 6), MPI_trainned = 76.4 ±
3.6%, 68.7 ± 5.8%, 79.9 ± 4.3%, and 72.2 ± 4.3%,
respectively; F(3, 28) = 1.14, p = 0.35, η2 = 0.11,
suggesting that training conditions such as feature
variability might not impact the amount of learning. In
contrast, the improvements for the swapped orientation
at post-test varied significantly across four conditions,
MPI_swapped = 17.8 ± 12.5%, 67.8 ± 9.7%, 67.2 ±
7.8%, and 66.1 ± 6.4%, respectively; F(3, 28) = 6.88,
p = 0.001, η2 = 0.42. Post hoc tests using the LSD
correction revealed that improvements in Condition 1
were significantly inferior to those of the other three
conditions (ps < 0.01), whereas the improvements for
the other three conditions were equivalent (ps > 0.9),
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confirming that learning multiple roving stimuli with
low variability led to learning specificity to trained
orientations.

Discussion

In the current study, we observed that roving did
not prevent the acquisition of multiorientation feature
detection learning. More important, the feature
variability of these stimuli played a crucial role in
the generalization of learning when presented in a
roving order. Specifically, roving stimuli with high
feature variability (45° deviation) exhibited significant
transfer effects to the swapped orientations, unlike
those with low feature variability (5° deviation).
Additionally, passive exposure to orientations with
high variability using a modified TPE procedure or
presenting the four target orientation search stimuli
in separate blocks facilitated the transfer of learning
with low feature variability to the swapped orientations.
These findings help to specify the conditions under
which multi-stimulus learning leads to generalization,
potentially inspiring the development of efficient
training paradigms in clinical settings.

We demonstrated that multi-stimulus learning in
a relatively complex feature detection task is evident
even when different stimuli are presented in a roving
manner. These results are unlike the evidence in simple
discrimination tasks involving low-level visual features
like contrast and orientation, in which perceptual
learning occurs only when multiple stimuli are
presented in a fixed order (e.g., blocked condition),
but not in a roving order (Adini, Wilkonsky, Haspel,
Tsodyks, & Sagi, 2004; Yu et al., 2004; Nahum et
al., 2010). Yotsumoto, Chang, Watanabe, and Sasaki
(2009) reported significant learning improvement in
a texture discrimination task (TDT), similar to the
feature detection task used in this study, which requires
the temporal separation of the very brief target and
the mask, regardless of whether the stimulus properties
are fixed or a random mix of different backgrounds
and target orientations. Subsequently, Wang, Cong,
and Yu (2013) showed that temporal learning accounts
for most of the overall TDT improvement, indicating
that TDT learning is mostly temporal learning. Both
TDT and feature detection learning may speed up the
temporal processing or narrow the temporal window of
attention (temporal resolution) to distinguish the target
from the mask at shorter SOAs (Polat, Ma-Naim, &
Spierer, 2009; Sterkin, Yehezkel, Bonneh, Norcia, &
Polat, 2009). Based on this finding, we speculate that
the brain could still tag different features in feature
detection tasks and switch attention to the appropriate
perceptual template, even when different features are
presented in a roving manner so that roving does

not prevent learning from occurring (Zhang et al.,
2008).

Here we found that roving with low feature variability
(5° deviation) resulted in learning specificity, while
increased feature variability (45° deviation) in multi-
stimulus learning led to a generalization of learning.
Learning under both conditions involves the same
number of stimuli, indicating that numerosity alone
is not particularly beneficial; instead, heterogeneity
and feature variability drive the variability effect.
Although numerosity is frequently taken as a proxy
for heterogeneity, our results are in line with the
evidence from grammar learning and category learning,
indicating that the two sources of variety (numerosity
and heterogeneity) do not always have to coincide and
it is often not the number of items or experiences per se
that drive variability benefits (Bowman & Zeithamova,
2020; Poletiek & van Schijndel, 2009; Schiff et al.,
2021). Meanwhile, we found that learning in the 45°
deviation condition took more time to reach 63% of
the asymptotic performance compared with the 5°
deviation condition, although the learning improvement
in both conditions was equivalent. These results are,
thus, consistent with some discussion by Raviv et al.
(2022) that “Learning from less variable input is often
fast, but may fail to generalize to new stimuli; learning
with more variable input is initially slower, but typically
yields better generalization,” which has been shown
in other research fields, such as motor learning and
language acquisition (Clopper & Pisani, 2004; Huet et
al., 2011).

Our previous TPE studies have shown that perceptual
learning can achieve transfer if the observers receive
additional exposure to the transfer orientation or
location via an irrelevant task (Xiao et al., 2008; Xiong,
Zhang et al., 2016; Zhang et al., 2010). Here, we further
demonstrated that a modified TPE procedure, in which
observers were trained with multiple stimulus feature
detection with a 5° deviation and simultaneously
passively exposed to orientations with a high feature
variability, equivalent to adding task-irrelevant
variability, enabled learning transfer. This finding
expands our understanding of learning transfer,
suggesting that the exposure should not be restricted
to the transfer orientation. It also supports our
understanding of perceptual learning at a conceptual
level, which might share a common mechanism with
category learning (Hu et al., 2021; Wang et al., 2016;
Xie & Yu, 2020; Xiong et al., 2022). Xie and Yu
(2020) propose that some high-level processes may
abstract stimulus evidence from multiple stimulus
conditions, and such learning might engage higher-level
orientation-invariant representation. It is most likely
that exposure to greater variability facilitates the
formation of more abstract knowledge and leads to
an improved ability to generalize learning to new
contexts. Recently, Manenti et al. (2023) trained a
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deep neural network model designed by Wenliang
and Seitz (2018) under high and low task-irrelevant
variability conditions, indicating that the networks
develop invariant representations of the task-irrelevant
feature when trained with highly varied inputs. These
invariant neurons are more prevalent in the higher-order
visual cortex, where neurons also have larger receptive
fields. So far, the locus of perceptual learning is still
inconclusive. Vogels (2023) indicated that the different
results between earlier investigations (Schoups, Vogels,
Qian, & Orban, 2001; Yang & Maunsell, 2004) on
the role of region V1 in learning fine orientation
discrimination may be influenced by the stimulus
variability in perceptual learning. This point resonates
with the viewpoint of Maniglia and Seitz (2018),
suggesting that “the distribution of learning across the
neural system depends upon the details of the training
procedure and the characteristics of the individual
being trained.”

How perceptual training parameters impact the
generalizability of learning is of sustained importance
to the field of visual perception (Lu & Dosher,
2022). Here we show one kind of training parameter,
feature variability, impacts learning generalization
in multi-stimulus learning. Why does high feature
variability lead to generalization? Training with a
single stimulus or low-variability stimuli may recruit a
limited neural population (Fahle, 2004) and unwittingly
promote the overfitting of specific stimuli (Sagi,
2011). One related explanation is that specificity
is a consequence of sensory adaptation owing to
repeated stimulation. Harris et al. (2012) reported that
generalization occurs when task-irrelevant dummy
trials are inserted between the main task, which is
equivalent to adding task-irrelevant variability. They
propose that counteracting adaptation arising during
prolonged training is beneficial for generalization.
Changing the orientation from 5° (Condition 1) to
45° deviation (Condition 2) or adding task-irrelevant
variability (Condition 3) probably alters intertrial
adaptation effects, with less sensory adaptation in
Conditions 2 and 3. Therefore, reduced adaptation in
these two conditions during training most likely results
in learning generalization. Another explanation from
category learning suggests that exposure to too few
instances increases the likelihood that the experienced
items are not representative of the category and are
insufficient for determining which characteristics
predict category membership (Raviv et al., 2022). In
contrast, exposure to stimuli with high variability helps
the brain to approximate the real distribution in the
world, leading to a higher probability of generalizing
outside the examples’ range (Tenebaum & Griffiths,
2001; Xu & Tenenbaum, 2007).

We found that transfer occurred in a 5° deviation
condition when stimuli were presented in a fixed order
rather than in roving order, although roving did not
prevent learning from occurring. These results align

with prior research indicating that training schedules,
such as the order in which examples are presented
or the interval between them, influence learning
and transfer when learning from the same instances
(Raviv et al., 2022). For example, compared with
massed training (e.g., when learning events occur in
succession), spaced training (e.g., when learning events
are distributed over time) often leads to better learning
and broader transfer of motor skills (Keller, Li, Weiss,
& Relyea, 2006; Travlos, 2010) and novel categories
(Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008; Vlach
& Sandhofer, 2012; Vlach, Sandhofer, & Kornell,
2008). It is hypothesized that varying practice regimens
can highlight potential differences between similar
variations of the same basic action or category, which
in turn results in a more thorough representation and
the elaboration of task-relevant information (Raviv et
al., 2022). Additionally, spaced training might improve
retrieval abilities through a cycle of forgetting and
reconstructing or increase the amount and/or richness
of memory traces and association cues that may be used
for retrieval and recall later on (Howard & Kahana,
2002; Vlach et al., 2008).

Several limitations in this study warrant discussion.
First, we measured the SOA thresholds using a
single-interval (yes/no) task as Ahissar and Hochstein
(1997), but with a staircase procedure instead of the
method of constant stimuli. Xiong, Xie et al. (2016)
demonstrated the importance of using appropriate
psychophysical methods in training to reduce location
specificity in perceptual learning. Further evidence
is needed to determine whether the current results
are specific to the particular psychophysical method.
Second, it is claimed that by using trial-by-trial
feedback in a single interval procedure, the observers
were induced to adopt a neutral response criterion
(Kaernbach, 1990). However, it is unclear whether
swapping the target and background orientations
between training and transfer influences the decision
criteria. Yashar and Denison (2017) evaluated the
changes in perceptual sensitivity (d′) and response bias
(c) for each SOA in feature detection learning, showing
that lower sensitivity and more conservative bias with
shorter SOAs. Future studies from different approaches
(e.g., a signal detection approach) could offer the
estimation of response bias changes. Third, we used
swapped orientation in the transfer test, which mirrored
the seminal work of Ahissar and Hochstein (1997).
However, given that the same orientations appear in
both training and transfer, we do not know at this
point whether this finding represents a classic learning
transfer to an untrained stimulus or embodies a different
concept, such as learning the background orientation.
Further exploration combining neurological techniques
is necessary for understanding the mechanisms of this
learning. Last, our study only tested three blocks of
swapped orientations during the post-test, which is
insufficient to examine the complete form of learning
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to learn (Bavelier et al., 2012; Kattner et al., 2017).
Recently, Cochrane and Green (2021) differentiated
two ways of generalization—direct transfer and
learning to learn—by examining the functional form of
learning generalization, in a time-dependent fashion,
in conjunction with an investigation of the functions
characterizing initial learning. Future investigations on
learning and generalization should carefully study the
functional form of perceptual learning on the by-person
and by-trial levels, where the mechanisms of learning
are expected to act.

Our study could help to optimize training procedures
in real-world applications of perceptual learning. A
growing body of research has demonstrated the benefits
of perceptual training for people with visual deficits,
such as amblyopia (Levi & Polat, 1996; Liu & Zhang,
2018, 2019; Zhang et al., 2014), macular degeneration
(Chung, 2011; Maniglia et al., 2016), cortical blindness
(Das, Tadin, & Huxlin, 2014; Herpich et al., 2019),
presbyopia (Polat et al., 2012), and dyslexia (Gori, Seitz,
Ronconi, Franceschini, & Facoetti, 2016). In addition,
numerous approaches aim to exploit perceptual
learning in the development of expert training, such as
athletes (Appelbaum & Erickson, 2018; Deveau, Ozer,
& Seitz, 2014), and medical experts (Kellman, 2013).
However, specificity could be a major obstacle to an
effective training procedure (Bavelier et al., 2010; Levi
& Li, 2009). Fortunately, studies have shown that the
multi-stimulus training approach to perceptual learning
can increase generalization (Deveau, Lovcik et al.,
2014; Deveau & Seitz, 2014; Fulvio, Green, & Schrater,
2014), ameliorate the effects of presbyopia and provide
a promise to improve visual function for individuals
suffering from low vision (Deveau & Seitz, 2014). In
terms of the application of perceptual learning (Lu,
Lin, & Dosher, 2016), for better generalization, future
training procedures should be taken into account using
multiple stimuli with high or clear feature variability to
counteract overtraining.

Keywords: perceptual learning, feature variability,
roving, specificity, transfer
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