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Abstract
A major barrier to deploying current machine
learning models lies in their non-reliability to
dataset shifts. To resolve this problem, most
existing studies attempted to transfer stable in-
formation to unseen environments. Particularly,
independent causal mechanisms-based methods
proposed to remove mutable causal mechanisms
via the do-operator. Compared to previous meth-
ods, the obtained stable predictors are more effec-
tive in identifying stable information. However, a
key question remains: which subset of this whole
stable information should the model transfer, in
order to achieve optimal generalization ability?
To answer this question, we present a comprehen-
sive minimax analysis from a causal perspective.
Specifically, we first provide a graphical condition
for the whole stable set to be optimal. When this
condition fails, we surprisingly find with an exam-
ple that this whole stable set, although can fully
exploit stable information, is not the optimal one
to transfer. To identify the optimal subset under
this case, we propose to estimate the worst-case
risk with a novel optimization scheme over the
intervention functions on mutable causal mech-
anisms. We then propose an efficient algorithm
to search for the subset with minimal worst-case
risk, based on a newly defined equivalence re-
lation between stable subsets. Compared to the
exponential cost of exhaustively searching over
all subsets, our searching strategy enjoys a polyno-
mial complexity. The effectiveness and efficiency
of our methods are demonstrated on synthetic data
and the diagnosis of Alzheimer’s disease.
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1. Introduction
Current machine learning systems, which are commonly
deployed based on their in-distribution performance, often
encounter dataset shifts (Quinonero et al., 2008) such as
covariate shift, label shift, ect., due to changes in the data
generating process. When such shifts exist in deployment
environments, the model may give unreliable prediction re-
sults, which can cause severe consequences in safe-critical
tasks such as healthcare (Hendrycks et al., 2021). At the
heart of this unreliability issue are stability and robustness
aspects, which respectively denote the insensitivity of pre-
diction behavior and generalization errors to dataset shifts.

For example, consider the system deployed to predict the
Functional Activities Questionnaire (FAQ) score that is com-
monly adopted (Mayo, 2016) to measure the severity of
Alzheimer’s disease (AD). During the prediction, the system
can only access biomarkers and volumes of brain regions
as covariates, with demographic information anonymous
for privacy consideration. However, the changes in such
demographics can cause shifts in covariates. To achieve
reliability for the deployed model, its prediction is desired
to be stable against demographic changes, and meanwhile
to be constantly accurate across all populations. For this
purpose, this paper aims to find the most robust (i.e., mini-
max optimal) predictor, among the set of stable predictors
across all deployed environments.

To achieve this goal, many studies attempted to learn in-
variance to transfer to unseen data. Examples include ICP
(Peters et al., 2016) and (Rojas-Carulla et al., 2018; Liu
et al., 2021; Ausset et al., 2022) that assumed the predic-
tion mechanism given causal features or representations to
be invariant; or (Subbaswamy et al., 2019; Rothenhäusler
et al., 2021) that explicitly attributed the variation to a prior
selection diagram or an exogenous variable. Particularly,
the recent independent causal mechanisms (ICM)-based
methods (Subbaswamy et al., 2019; Schölkopf et al., 2021)
causally factorized the joint distribution into the mutable
(M ) set and the stable (S) set, which contained variables
with changed and unchanged causal mechanisms, respec-
tively. By intervening on M , they obtained a set of stable
predictors, with each containing a stable subset of S to trans-
fer. Compared to ICP-related methods (Peters et al., 2016;
Bühlmann, 2020), these stable predictors exploited more
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Figure 1: FAQ prediction in Alzheimer’s disease. (a) Comparison of maximal mean square error (max. MSE) over deployed environments.
(b) Max. MSE of subsets that are ranked in ascending order from left to right, respectively according to the estimated worst-case risk of
our method (marked by red) and the validation‘s loss adopted by (Subbaswamy et al., 2019) (marked by blue).

types of invariance and thus potentially had better predic-
tion power. However, an important question on robustness
has not been studied: which subset of S should the model
transfer, in order to achieve optimal generalization ability?

In this paper, we give a comprehensive answer from the
perspective of the structural causal model. Specifically, we
first provide a graphical condition that is sufficient for the
whole stable set to be optimal. This condition can be easily
tested via causal discovery. When this condition fails, we
construct an example that counter-intuitively shows that this
whole stable set, although keeps all the stable information,
is NOT the optimal one to transfer. Under this case, we pro-
pose an optimization scheme over the intervention functions
on M , which is provable to identify the worst-case risk for
each stable subset. Our key observation is that the source of
dataset shifts is governed by M ; therefore, the intervention
on M , if set appropriately, can well mimic the worst-case
deployed environment. Back to the FAQ prediction example,
Fig. 1 (b) shows that our method can consistently reflect the
maximal mean squared error (max. MSE) of stable subsets;
as a contrast, the validation’s loss adopted by (Subbaswamy
et al., 2019) fails to do so. This explains our advantage in
predicting FAQ across patient groups shown in Fig. 1 (a).

To efficiently search for the optimal subset, we define an
equivalence relation between stable subsets via d-separation
such that two equivalent subsets share the same worst-case
risk. We theoretically show that compared to exhaustively
searching over all subsets, searching over only equivalence
classes can reduce the exponential complexity to a polyno-
mial one. The effectiveness and efficiency of our methods
are demonstrated by the improved robustness, stability, and
computation efficiency on a synthetic dataset and the diag-
nosis of Alzheimer’s disease.

Contributions. To summarize, our contributions are:

1. We propose to select the optimal subset of invariance
to transfer, guided by a comprehensive minimax anal-

ysis from the causal perspective. To the best of our
knowledge, this is the first work to study the problem
of which invariance should we transfer, in the literature
of robust learning.

2. We define an equivalence relation between stable sub-
sets, and accordingly propose to search over only equiv-
alence classes. This new search algorithm can be effi-
ciently solved in polynomial time.

3. We achieve better robustness and stability than others
on synthetic data and Alzheimer’s disease diagnosis.

2. Related work
Causality-based domain generalization. There are emerg-
ing works that considered domain generalization from the
causal perspective. One line of works (Arjovsky et al., 2019;
Liu et al., 2021; Ahuja et al., 2021; Ausset et al., 2022)
promoted invariance as a key surrogate feature of causation
where the causal graph was more of a motivation. Another
line of works (Peters et al., 2016; Rojas-Carulla et al., 2018;
Martinet et al., 2022) was based on invariance assumptions
regarding the causal mechanisms. The works most relevant
to us are (Subbaswamy et al., 2019; Schölkopf et al., 2021),
which followed the principle of independent causal mech-
anisms (Schölkopf et al., 2012) to identify invariance by
removing the mutable causal mechanisms. However, they
did not study how to select the optimal subset in terms of
robustness on out-of-distribution generalization.

Optimization-based domain generalization. Some recent
works, e.g., DRO (Sinha et al., 2018) and (Sagawa et al.,
2019; Wu et al., 2022) formulated domain generalization
as a minimax optimization problem and optimized the pre-
dictor for robustness. For optimization convenience, they
usually constrained the dataset shifts to a limited extent,
which limited their application in the real world. In con-
trast, we adopt optimization to estimate the worst-case risks
of predictors, then select the best one via comparison. Our
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method can generalize well in a broader distribution family,
where the extent of dataset shifts can be unbounded.

Heterogeneous causal discovery. Our work benefits from
the recent progress in heterogeneous causal discovery (Ghas-
sami et al., 2018; Huang et al., 2020; Perry et al., 2022),
a field that seeks to learn the causal graph with data from
multiple environments. However, unlike causal discovery
that recovers causal relationships, we focus on minimax
analysis and robust subset selection.

3. Preliminary
We consider the supervised regression scenario, where
the system includes a target variable Y ∈ Y , covariates
X := [X1, ..., Xd] ∈ X , and data collected from heteroge-
neous environments. In practice, different “environments”
can refer to different groups of subjects or different experi-
mental settings. We denote the set of training environments
as Etr, and the broader set of environments for deployment
as E . We denote E as the environmental indicator vari-
able with support E . We use {De}e∈Etr to denote our train-
ing data, with De :={(xek, yek)}ne

k=1 ∼i.i.d P e(X, Y ) being
data collected from environment e. In a directed acyclic
graph (DAG) G, we denote the parents, children, neigh-
bors, and descendants of the vertex Vi as Pa(Vi), Ch(Vi),
Neig(Vi), and De(Vi), respectively. We use ⊥⊥G to denote
d-separation in G. We denote GVi

as the graph attained via
deleting all arrows pointing into Vi.

Our goal is to find the most robust predictor f∗ among stable
predictors with data from Etr. Here, we say a predictor
f :X → Y is stable if it is independent of E. We denote the
set of stable predictors as FS . For robustness, a commonly
adopted measurement (Peters et al., 2016; Ahuja et al., 2021)
is to investigate a predictor’s worst-case risk, which provides
a safeguard for deployment in unseen environments. That
is, we want f∗ to have the following minimax property:

f∗(x) = argmin
f∈FS

max
e∈E

EP e [(Y − f(x))2]. (1)

Next, we introduce some basic assumptions, which are com-
monly made in causal inference and learning (Spirtes et al.,
2000; Pearl, 2009; Arjovsky et al., 2019).
Assumption 3.1 (Structural causal model). We assume that
P e(X, Y ) is entailed by an unknown DAG G over V for
all e ∈ E , where V := X ∪ Y . Each variable Vi ∈ V
is generated by a structural equation Vi = gei (Pa(Vi), Ui),
where Ui denotes an exogenous variable. We assume each
gei is continuous and bounded. Each edge Vi → Vj in G
means Vi is a direct cause of Vj . Besides, we assume the
model is Markovian which states that A ⊥⊥G B|Z⇒ A ⊥⊥
B|Z for disjoint vertex sets A,B,Z ⊆ V.

According to the Causal Markov Condition theorem (Pearl,
2009), the joint distribution can be causally factorized into

P e(V) =
∏
i P

e(Vi|Pa(Vi))), where P e(Vi|Pa(Vi))) is
the causal factor of Vi. Based on the principle of inde-
pendent causal mechanisms (Schölkopf et al., 2012), these
causal factors are autonomous of each other. On the ba-
sis of this, the interventional distribution is defined as
P (V|do(Vi=vi)) :=

∏
j 6=i P

e(Vj |Pa(Vj)))1Vi=vi . Here
do(Vi=vi) means lifting Vi from its original causal mecha-
nism gei (Pa(Vi), Ui) and setting it to a constant value vi.

In addition to the Markovian assumption, we also assume
the causal faithfulness, which enables us to infer the graph
structure from probability properties:
Assumption 3.2 (Causal faithfulness). For disjoint vertex
sets A,B,Z ⊆ V, A ⊥⊥ B|Z⇒ A ⊥⊥G B|Z.

Sparse mechanism shift hypothesis across E . To build
the connection between seen and unseen environments for
transfer, we adopt the sparse mechanism shift hypothe-
sis (Schölkopf et al., 2021), i.e., distributional shifts in
P e(X, Y ) are the results of changes in only a subset of
causal factors. Formally,

P e(X, Y ) = P (Y |Pa(Y ))
∏
i∈S

P (Xi|Pa(Xi))∏
i∈M

P e(Xi|Pa(Xi)), dS := |S|, dM := |M |, (2)

where S,M respectively denote stable and mutable sets
such that each Xi ∈ XS has an invariant causal factor
P (Xi|Pa(Xi)); while the factor of each Xi ∈ XM varies
across E . Correspondingly, we call XS as stable variables
and XM as mutable variables. In addition to XS , we also
assume the causal factor of Y keeps invariant across E , as
widely adopted by the existing literature (Arjovsky et al.,
2019; Sun et al., 2021; Mitrovic et al., 2021).

To recover the XM from the training distribution, it is also
necessary to assume that Etr can reflect the mutation of XM

across E . Formally,
Assumption 3.3 (Consistent heterogeneity). For eachXi ∈
XM , there exists two different environments e, e′ ∈ Etr such
that P e(Xi|Pa(Xi)) 6= P e

′
(Xi|Pa(Xi)).

Stable predictor set FS via do(xM ). Based on Eq. (2),
the (Subbaswamy et al., 2019) obtained a stable predictor
set FS := {fS′(x)|S′⊆S}, fS′(x) :=E[Y |xS′ , do(xM )]
by intervening on XM . Compared to (Peters et al., 2016;
Rojas-Carulla et al., 2018) that only used invariance from
stable causal features, these stable predictors in FS could
additionally exploit invariance from mutable features, thus
potentially having better transfer ability.

However, regarding robustness, it remains unknown which
predictor in FS is optimal. As identifying f∗ ∈ FS is
equivalent to selecting the optimal stable subset S∗ ⊆ S
such that fS∗ = f∗, it turns to the following question: which
subset of S is the most robust one to transfer?
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(a) (b)
Figure 2: Illustration of the graphical condition in Thm. 4.1. Stable
and mutable variables are respectively marked blue and red. In
both (a) and (b), we have X0

M = {XM},W = {X1}.

4. Minimax analysis for the optimal subset
In this section, we provide a comprehensive minimax analy-
sis to answer the above question. At a first glance, one may
take S as optimal since it keeps all stable information. We
shall show that this is not necessarily the case. To this end,
we first provide a graphical condition for the whole stable
set to be optimal, i.e., S∗ = S. This graphical condition
can be easily tested via causal discovery. Second, when
this condition is not met, we offer a counter-example in
which S is not optimal. Then, to identify S∗ in this case, we
propose an optimization scheme that is provable to identify
the worst-case risk for each subset, equipped with which we
can pick up the S∗ as the one with minimal worst-case risk.

Next, we first introduce a graphical condition and show that
the whole stable set S is optimal under this condition.

Theorem 4.1 (Graphical condition for S∗ = S). Suppose
Asm. 3.1 holds. Denote X0

M :=XM ∩Ch(Y ) as mutable
variables in Y ’s children, and W := De(X0

M )\X0
M as

descendants of X0
M . Then, we have S∗ = S if Y does not

point to any vertex in W.

To understand the graphical condition, note that Y 6→W
enables applying the inference rules (Pearl, 2009) to remove
the “do” in P (Y |XS , do(xM )) and degenerate it to a con-
ditional distribution P (Y |X′), for some X′ ⊆ X. This
degeneration allows us to construct a P e where any other
predictor has a larger quadratic loss than fS (Rojas-Carulla
et al., 2018), thus proving the optimality of S. Formally, we
have the following equivalence result:

Proposition 4.2. Under Asm. 3.1, the graphical condition
holds if and only if P (Y |XS , do(xM )) can degenerate to a
conditional distribution without the “do”.

Example 4.3. To understand this equivalence, consider the
DAG shown in Fig. 2 (a), where Y 6→W. We then have
Y ⊥⊥G

XM
X1, XM |X2 and hence P (Y |X1, X2, do(xM )) =

P (Y |X2). As a contrast, for the DAG shown in Fig. 2 (b),
the collider X1 causes Y 6⊥⊥G

XM
XM |X1 and prevents the

removing of the “do” in P (Y |X1, do(xM )).

The graphical condition can be effectively tested via causal
discovery, as guaranteed by the following proposition:

Proposition 4.4 (Testability of Thm. 4.1). Under Asm. 3.1-
3.3, we have that i) the W is identifiable; and ii) the condi-
tion Y 6→W is testable from {De}e∈Etr .

Remark 4.5. To test Y 6→ W, we first learn the skeleton
of G, followed by detecting X0

M and W with the heteroge-
neous causal discovery algorithm CD-NOD (Huang et al.,
2020). Then, we have Y 6→ W if and only if Y is not
adjacent to W because W ⊆ De(Y ) by definition. More
details are left to Appx. B.

Thm. 4.1 only provides a partial characterization for S to
be optimal; it is still unclear whether the whole stable set
is optimal in all cases. In the following, we give a negative
answer with a counter-example, whose DAG of Fig. 2 (b)
does not satisfy the graphical condition and Y,XM , X1 are
binary variables. We have the following result:
Claim 4.6. There exists P (Y ) and P (X1|XM , Y ), such
that fS(x) := E[Y |x1, do(xM )] has a larger worst-case
risk than f∅(x) := E[Y |do(xM )]:

max
e∈E

EP e [(Y − fS(x))2] > max
e∈E

EP e [(Y − f∅(x))2].

Remark 4.7. This result seems surprising as intuitively the
whole stable set should be optimal since it fully exploits the
stable information, according to existing minimax results in
(Peters et al., 2016; Rojas-Carulla et al., 2018). To explain,
one should note that these results are built on conditional dis-
tributions, where one can construct a P e to make any other
subset have a larger quadratic loss than S. However, when
the interventional distribution can not degenerate, such con-
struction is generally not feasible. Please refer to Appx. A.2
for details.

Under general cases where the whole stable set may not
be optimal, it remains unknown that which subset of S
is the optimal one to transfer. To answer this ques-
tion, we propose to estimate the worst-case risk RS′ :=
maxe∈E EP e [(Y −fS′(x))

2
] for each subset S′ ⊆ S; then

the S∗ corresponds to the subset with minimalR.

For this purpose, we consider a distribution family
{Ph}h, where h maps from Pa(XM ) to XM and Ph :=
P (Y,XS |do(XM = h(pa(xM ))). This distribution set
keeps the invariant mechanisms of Y and XS unchanged
while allowing the XM given their parents to vary arbitrar-
ily, which can well mimic the distributional shifts among
deployed environments in E . Particularly, we show that the
worst-case risk RS′ can be attained at some Ph, where h
is a Borel measurable function. Formally, denote the Borel
function set as B, we have:

Theorem 4.8 (Worst-case risk identification). Let LS′ :=
maxh∈B EPh

[(Y−fS′(x))2] be the maximal population loss
over {Ph}h∈B for subset S′. Then, we have LS′ = RS′ for
each S′ ⊆ S. Therefore, we have S∗ = argminS′⊆S LS′ .
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This result inspires the following optimization scheme over
functions h ∈ B to estimateRS′ :

max
h∈B
LS′(h) := EPh

[(Y −fS′(x))2],

as the optimality of which is assured to attain RS′ . To
implement, we parameterize h with a multilayer perceptron
(MLP) hθ and optimize over θ, due to the ability of MLP
to approximate any Borel function (Hornik et al., 1989).
To show the tractability of this optimization, we have the
following identifiability result for LS′(h):

Proposition 4.9. Under Asm. 3.1-3.3, the Ph, fS′ , and
hence LS′(h) are identifiable.

5. Searching S∗ among equivalence classes
In this section, we provide Alg. 1 to identify S∗, which com-
bines Thm. 4.1 and Thm. 4.8. Specifically, Alg. 1 returns S
as S∗ (line 3), if the graphical condition Y 6→W is tested
true. Otherwise, it searches over subsets to identify S∗ in
terms of the estimated worst-case risk L. For this purpose,
a simple search method that is commonly adopted in the
literature (Peters et al., 2016; Rojas-Carulla et al., 2018;
Magliacane et al., 2018; Subbaswamy et al., 2019) is to
exhaustively search over all subsets of S.

In the following, we provide a new search strategy with
better efficiency, by noticing that the exhaustive search can
be redundant for subsets that have the same worst-case risk.
Formally, we introduce the equivalence relation as follows:

Definition 5.1 (Equivalence relation). Consider a general
graph G over the target Y and covariates X. Let ∼G be an
equivalence relation on all subsets of {1, ...,dim(X)}. We
say S′ ∼G S′′ if ∃S∩ ⊆ S′ ∩ S′′ such that:

Y ⊥⊥G XSc
∩ |XS∩ , where Sc∩ := (S′ ∪ S′′)\S∩. (3)

Algorithm 1 Optimal subset S∗ selection.

Input: The training data {De}e∈Etr .

1: Learn the skeleton of G; detect X0
M , W.

2: if Y 6→W then
3: S∗ ← S. # Thm. 4.1
4: else
5: Recover Pow(S)/∼G with Alg. 2.
6: Lmin ←∞.
7: for [S′] in Pow(S)/∼G do
8: if LS′ < Lmin then
9: Lmin ← LS′ , S∗ ← S′. # Thm. 4.8

10: end if
11: end for
12: end if
13: return S∗.

Algorithm 2 Equivalence classes recovery.

1: function recover(G)
2: if Neig(Y ) = ∅ then
3: return {Pow(S)}.
4: else
5: Pow(S)/∼G← ∅.
6: for S′ ⊆ Neig(Y ) do
7: Construct a MAG MG over S\Neig(Y ), with S′

as the selection set, Neig(Y )\S′ as the latent set.
8: Pow(S\Neig(Y ))/∼MG← recover(MG).
9: Add S′ to each subset in Pow(S\Neig(Y ))/∼MG .

10: Pow(S)/∼G .append(Pow(S\Neig(Y ))/∼MG).
11: end for
12: return Pow(S)/∼G.
13: end if
14: end function

Input: The causal graph G.

1: Let GS the subgraph of G over XS ∪ Y .
2: return recover(GS).

We call elements of the quotient space Pow(S)/ ∼G as
equivalence classes. We use [S′] := {S′′|S′′ ∼G S′} to de-
note the equivalence class of S′ and NG := |Pow(S)/∼G |
to denote the number of equivalence classes.

Remark 5.2. The causal graph G in Def. 5.1 can be a Maxi-
mal Ancestral Graph (MAG) (Spirtes et al., 2000), where bi-
directed edges (↔) and undirected edges (−) exist due to un-
observed confounders and selection variables, respectively.
Correspondingly, “⊥⊥G” in Eq. (3) refers to m-separation.

In our scenario, we are interested in the ∼G relation be-
tween stable subsets in the subgraph GS over XS ∪ Y ,
which corresponds to conditioning on “do(xM )” in G.
According to Def. 5.1, two stable subsets S′ and S′′

are equivalent if they share an intersection set S∩ that
can d-separate S′\S∩ and S′′\S∩ from Y . As a result,
we have P (Y |XS′ , do(xM )) = P (Y |XS∩ , do(xM )) =
P (Y |XS′′ , do(xM )) and hence RS′ =RS′′ . For example,
in Fig. 2 (a), we have {X2} ∼G {X1, X2} as XS∩ = {X2}
d-separates XSc

∩ = {X1, X2}\{X2} = {X1} from Y in GS .

With this ∼G equivalence, we only need to search equiva-
lence classes, rather than all subsets. To enable this search,
we provide Alg. 2 to recover the Pow(S)/∼G in a recur-
sive manner. Specifically, given the input graph G, we first
obtain the subgraph GS by removing XM in G. Then we
find Y ’s neighbors. Since any two vertices in Neig(Y ) can-
not d-separate each other from Y , we go over each subset
S′ ⊆ Neig(Y ) to construct a MAG over vertices other than
Neig(Y ), with S′ as the selection set and Neig(Y )\S′ as
the latent set. Then it is left to recover equivalence classes in
each MAG, and include them to Pow(S)/∼G after append-
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DAG 𝐺 Subgraph 𝐺! over 𝐗! ∪ 𝑌

Sel./lat.

Eq. cls.

MAG

2nd recurs.
𝑋! /∅, ∅/{𝑋!}

(c.1)(a.1) (d.1)

𝑋", 𝑋! /∅,⋯ , ∅/{𝑋", 𝑋!}End of recursion

1st recurs.

(c)(a) (d)(b)

𝑋#, 𝑋$ /∅ 𝑋# /{𝑋$} 𝑋$ / 𝑋# ∅/{𝑋#, 𝑋$}Sel./lat.

Eq. cls.

MAG

𝑋!, 𝑋" , 𝑋! , 𝑋" , [∅]𝑋!, 𝑋" , 𝑋! , 𝑋" , [∅]

[∅] [∅]

𝑋! , [∅] [∅]

[∅]

Figure 3: An example to illustrate Alg.2. Stable and mutable
variables are respectively marked blue and red.

ing the selection set S′ (line 9,10). We recursively repeat the
above procedure until Neig(Y ) is empty, which indicates
all subsets are equivalent since all of them are d-separated
from Y . To illustrate, consider the following Exam. 5.3.

Example 5.3. Consider the causal graph G shown in Fig. 3.
We first obtain the GS over XS ∪ Y , where Neig(Y ) =

{X1, X3}. We then take each subset S′ ⊆ {X1, X3} as the
selection set and {X1, X3}\S′ as the latent set to respec-
tively construct MAGs (a-d) in the first recursion. For (a)
with Neig(Y ) = {X4}, we both obtain the MAG in (a.1)
when taking {X4} (resp. ∅) and ∅ (resp. {X4}) as the se-
lection set (resp. latent set). Since Neig(Y ) = ∅ in (a.1),
there is only one equivalence class [∅] := Pow({X2, X5}).
Following line 9 in Alg. 2, we append X4 and ∅ to each
subset in equivalence classes of (a.1) to obtain the equiva-
lence classes of (a): [X4] and [∅]. Similarly, after appending
the selection set S′ = {X1, X3}, we include [X1, X3, X4]

and [X1, X3] to Pow(S)/∼G. We similarly apply this proce-
dure to (b),(c),(d), which respectively contribute equivalence
classes {[X1]}, {[X3], [X2, X3], [X3, X4], [X2, X3, X4]}, and
{[∅], [X2], [X4], [X2, X4]} to Pow(S)/∼G.

In practice, we cannot access the true causal graph G but
can only recover the graph that is Markovian equivalent to
G. The following proposition shows that Alg. 2 can still
recover Pow(S)/∼G in this case.

Proposition 5.4. Under Asm. 3.1, 3.2, for each input graph
that is Markov equivalent to the ground-truth G, Alg. 2 can
correctly recover the Pow(S)/∼G.

Besides, we in Appx. E.2 show that the complexity of Alg. 2
is O(NG), i.e., same as the complexity of searching NG
equivalence classes, which is discussed as follows.

Searching complexity. We show that compared to the expo-
nential costO(2dS ) of exhaustive search, our search strategy
enjoys a polynomial cost P(dS) when GS is mainly com-
posited of chain vertices. Here, a chain vertex is a vertex of
degree ≤ 2, and a chain is a sequence of connected chain
vertices. Specifically, we have the following result:
Proposition 5.5 (Complexity (informal)). Let d≤2 and
d>2 := dS−d≤2 respectively denote the number of chain
vertices and non-chain vertices. When the chain vertices
are “distributed intensively”, NG = P(dS) if and only if
d>2 = O(log(dS)).

Here, “distributed intensively” means that chain vertices
compose only a few chains. Roughly speaking, this is be-
cause when the graph is composed of multiple chains that
do not intersect each other, NG is determined by the product
of multiple chains’ lengths. As a result, the NG tends to be
smaller when the number of chains is small. Formal and
more general results are left to Appx. E.

6. Experiment
We evaluate our method on synthetic data and a real-world
application, i.e., diagnosis of Alzheimer’s disease1.

Compared baselines. i) Vanilla that uses E[Y |x] to pre-
dict Y ; ii) ICP (Peters et al., 2016) that assumed and used
the invariance of parental features P (Y |Pa(Y )); iii) IC
(Rojas-Carulla et al., 2018) that extended ICP to features be-
yond Pa(Y ); iv) DRO (Sinha et al., 2018) that constrained
the distance between training and deployed distributions
and conducted optimization for robustness; v) Surgery es-
timator (Subbaswamy et al., 2019) that used validation’s
loss to identify the optimal subset; vi) IRM (Arjovsky et al.,
2019) that learned an invariant representation to transfer; vii)
HRM (Liu et al., 2021) that extended IRM to cases with un-
known environmental indices, by exploring the heterogene-
ity in data via clustering; viii) IB-IRM (Ahuja et al., 2021)
that leveraged the information bottleneck to supplement
the invariance principle in IRM; and ix) Anchor regres-
sion (Rothenhäusler et al., 2021) that interpolated between
ordinary least square (LS) and causal minimax LS.

Evaluation metrics. We use the maximal mean square error
(max. MSE) and the standard deviation of MSE (std. MSE)
over deployed environments to evaluate the robustness and
stability of predictors, respectively.

Implementation details. We use two-layer nonlinear
MLPs to implement the fS′ and hθ. Hyperparameter set-

1Code is available at https://github.com/lmz123321/
which_invariance.
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(a) (b)

Figure 4: (a) The causal graph for synthetic data generation. Stable and mutable variables are respectively marked blue and red. The
dashed edge XM1 99K X1 does not exist (resp. exist) in setting-1 (resp. setting-2). (b) The learned causal graph on ADNI. The target
(FAQ) and biomarkers (ApE, GEN, EDU) are placed in the bottom right. Brain regions are placed at their positions in the brain.

Table 1: Evaluation on synthetic and ADNI datasets. The first column notes the methods we compare. The second and third columns
respectively represent the maximal MSE and standard deviation of MSE over deployment environments. The best results are boldfaced.

Method max. MSE (↓) std. MSE (↓)
Syn1 Syn2 ADNI Syn1 Syn2 ADNI

Vanilla 1.336±0.4 1.861±0.4 1.399±0.1 0.240±0.2 0.481±0.1 0.299±0.0
ICP (Peters et al., 2016) 1.855±0.7 2.331±0.2 1.176±0.0 0.130±0.1 0.230±0.0 0.155±0.0

IC (Rojas-Carulla et al., 2018) 1.211±0.4 1.254±0.1 1.165±0.2 0.176±0.2 0.194±0.1 0.198±0.1
DRO (Sinha et al., 2018) 1.364±0.5 1.495±0.1 1.181±0.0 0.250±0.2 0.326±0.0 0.145±0.0

Surgery (Subbaswamy et al., 2019) 0.926±0.0 1.101±0.1 1.069±0.1 0.028±0.0 0.057±0.0 0.129±0.0
IRM (Arjovsky et al., 2019) 1.106±0.2 1.246±0.1 1.223±0.0 0.127±0.1 0.164±0.1 0.177±0.0

HRM (Liu et al., 2021) 0.975±0.0 1.494±0.1 1.272±0.1 0.046±0.0 0.312±0.1 0.194±0.1
IB-IRM (Ahuja et al., 2021) 1.076±0.0 1.079±0.0 1.222±0.2 0.056±0.0 0.040±0.0 0.113±0.1

AncReg (Rothenhäusler et al., 2021) 0.938±0.0 1.377±0.2 1.138±0.1 0.033±0.0 0.257±0.1 0.159±0.0
Ours (Alg. 1) 0.926±0.0 1.079±0.0 0.890±0.1 0.028±0.0 0.034±0.0 0.038±0.0

Table 2: Comparison of computational cost on ADNI.
Method Searching cost Time

Exhaustive (Pow(S)) 225 about 6.4y
Ours (Pow(S)/∼G) 25307 42h

tings of our method and baselines are left in Appx. F.1.

6.1. Synthetic data

Data generation. We use the DAG in Fig. 4 (a) and the
structural equation Vi = αe

i gi
(∑

Vj∈Pa(Vi)
βi,jVj

)
+ εi to

generate data, where αei keeps constant, i.e., αei ≡ αi for all
e if Vi is a stable variable; or varies with e if Vi is a mutable
variable. For each i, the function gi is randomly chosen
from {identity, tanh, sinc, sigmoid}. Each linear parame-
ter βi,j is randomly drawn from a uniformed distribution
U([−2,−0.5]∪ [0.5, 2]) and the noise item εi ∼ N (0, 0.1).
We generate 20 environments and ne = 100 samples in each
environment. To remove the effect of randomness, we re-
peat 5 times: each time we randomly pick 10 environments
for training and the others for deployment.

Table 3: Std. over equivalent subsets on synthetic data.
Metric Value

Inter-class std. 1.000
Intra-class std. 0.008

We consider two different settings, with the graphical con-
dition holds (resp. not hold) in setting-1 (resp. setting-2).
Specifically, according to the definition, X0

M = {XM1
}.

In setting-1, the dashed edge XM1
99K X1 does not exist,

hence W is empty and the graphical condition Y 6→ W
in Thm. 4.1 holds. In this regard, the whole stable set is
expected to be optimal. In setting-2, the edge XM1 → X1

exists, hence W := {X1, X2, X3, X4, XM2} and Y →W
that violates the graphical condition. In this regard, the S′

with minimal LS′ is expected to be optimal.

Results. We report the max. MSE and std. MSE over de-
ployment environments in Tab. 1. As shown, our method
outperforms the others in all settings, indicating better ro-
bustness (max. MSE) and stability (std. MSE). Besides,
we report the max. MSE of different subsets in Fig. 5. As
shown, in setting-1, the whole stable set S has the mini-
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(a) (b) (c)

Figure 5: Results on synthetic data. (a) Setting-1: max. MSE of different subsets, where the whole stable set S is optimal. (b) Setting-2:
max. MSE of subsets ranked in the ascending order from left to right, respectively according to the estimated L of our method and the
validation’s loss adopted by (Subbaswamy et al., 2019). (c) Comparison of searching cost when d>2 increases.

mal max. MSE as expected; in setting-2, the subset with
minimal L also has the minimal max. MSE over deployed
environments. Besides, we can observe that the max. MSE
shows an approximate increasing trend in subsets ranked by
our method; as a contrast, the trend is decreasing in those
ranked by the validation’s loss adopted by (Subbaswamy
et al., 2019). This result suggests that our method can con-
sistently reflect the worst-case risk.

Analysis of ∼G equivalence. To show the effectiveness of
Alg. 2 in recovering equivalence classes, we compute the
intra-class standard deviation, and compare it with inter-
class std., in terms of max. MSE. For intra-class std., we
first compute the standard deviation of max. MSE over all
subsets in each equivalence class, then take the average over
all equivalence classes. For inter-class std, we first compute
the average max. MSE over all subsets in each equivalence
class; then we compute the std. of the average max. MSE
over equivalence classes. In Tab. 3, we observe that the
intra-class std. is much smaller than the inter-class std. This
result suggests that our Alg. 2 to identify equivalent subsets
is effective enough to guarantee the validity of searching
over only equivalence classes rather than all subsets.

Searching complexity. We first generate a sequence of
causal graphs (Fig. 8) with d>2 growing, by deleting/adding
edges in the graph shown in Fig. 4 (a) and then compute
the searching cost for these graphs. We can see in Fig. 5
(c) that i) compared with the exhaustive search, our method
can significantly save the searching cost in both sparse and
dense graphs; ii) the searching cost over equivalence classes
decreases when d>2 decreases.

6.2. Alzheimer’s disease diagnosis

Dataset & preprocessing. We consider the Alzheimer’s
Disease Neuroimaging Initiative (Petersen et al., 2010)
(ADNI) dataset, in which the imaging data is acquired from
structural Magnetic Resonance Imaging (sMRI) scans. We
apply the Dartel VBM (Ashburner, 2007) for preprocess-

ing and the Statistical Parametric Mapping (SPM) for seg-
menting brain regions. Then, we implement the Automatic
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002) and region indices provided by (Young et al., 2018)
to partition the whole brain into 22 regions (Tab. 4). In
addition to brain region volumes, we also include demo-
graphics (age, gender (GEN)) and genetic information (the
number of ApoE-4 alleles (ApE)). With these covariates,
we predict the Functional Activities Questionnaire (FAQ)
score (Mayo, 2016) for each patient. We split the dataset
into seven environments according to age (<60, 60-65, 65-
70, 70-75, 75-80, 80-85, >85), which respectively contain
ne =27,59,90,240,182,117,42 samples. We repeat 3 times,
with each time randomly taking four environments for train-
ing and the rest for deployment.

Causal discovery. The learned causal graph is shown in
Fig. 4 (b). As we can see, the affection of AD (measured
by FAQ score) first shows in the hippocampus (HP) and
medial temporal lobe (TML), then propagates to other brain
regions, which echos existing studies that the HP and TML
are early degenerated regions (Barnes et al., 2009; Duara
et al., 2008), Besides, we observe that the caudate (CAU),
pallidum (PAL), and hippocampus (HP) are mutable regions,
which agrees with the heterogeneity found in different age
groups (Cavedo et al., 2014; Fiford et al., 2018).

Equivalence and searching complexity. As shown in
Fig. 4 (b), we have FAQ→ TML, which violates the graphi-
cal condition (TML ∈W) in Thm. 4.1. We thus search over
equivalence classes to find S∗. As shown in Tab. 2, there
are only 25307 equivalence classes out of the 225 subsets.
Correspondingly, the training time can be saved from about
55,687 hours ≈ 6.4 years to only 42 hours.

Results. Fig. 1 (a) shows the max. MSE of our method
and baselines. As we can see, our method significantly out-
performs the others, which demonstrates the effectiveness
of Thm. 4.8 in robust subset selection. Further, Fig. 1 (b)
shows that the max. MSE of subsets ranked by our method
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appears a positive correlation with the true worst-case risk;
as a contrast, the correlation is negative for the max. MSE of
subsets ranked by the validation‘s loss. Particularly, the top
subset selected by our method {FSL,TSL,TIL,PSL,OML,CM}
reaches a max. MSE of 0.890; while the one selected by
the validation‘s loss {FSL,FML,TSL,TIL,PSL,CA,THA,GEN}
only has a max. MSE of 1.069. These results demonstrate
the effectiveness of our method in estimating the worst-case
risk. The improvements over ICP, IRM, and their exten-
sions can be attributed to the property use of invariance
beyond stable causal features/representations. The advan-
tage over DRO may lie in the robustness of our method
beyond bounded distributional shifts; while the advantage
over Anchor regression can be contributed to the relaxation
of the linearity assumption.

7. Conclusion
In this paper, we propose a causal minimax learning ap-
proach to identify the optimal subset of invariance to trans-
fer, in order to achieve robustness against dataset shifts. We
first provide a graphical condition that is sufficient for the
whole stable set to be optimal. When this condition fails,
we propose an optimization-based approach that is provable
to attain the worst-case risk for each subset. Further, we pro-
pose a new search strategy via d-separation, which enjoys
better efficiency. The subset selected by our method out-
performs the others in terms of robustness on Alzheimer’s
disease diagnosis. In the future, we are interested to extend
our results to cases where the DAG is allowed to vary, which
may happen when there are many deployed environments.
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Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and
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A. Causal minimax theories
A.1. Proof of Thm. 4.1: Graphical condition for S∗ = S

Thereom 4.1. Suppose Asm. 3.1 holds. Denote X0
M := XM ∩ Ch(Y ) as mutable variables in Y ’s children, and

W := De(X0
M )\X0

M as descendants of X0
M . Then, we have S∗ = S if Y does not point to any vertex in W.

Proof. Define W2 := X\(X0
M ∪De(X0

M )) as variables beyond X0
M and their descendants, X1

M := XM\X0
M as mutable

variables beyond Y ’s children.

We first show the equivalence of the following conditions; then show under either of them, we have S∗ = S.

(1) Y ⊥⊥G
X0

M

W|W2;

(2) Y does not point to any vertex in W;

(3) P (Y |XS , do(xM )) can degenerate to the conditional distribution P (Y |W2).

We introduce some notations that will be used in the proof. For a vertex Vi, denote An(Vi) as the set of its ancestors, GVi
as

the graph obtained by deleting all arrows pointing into Vi, GVi
as the graph obtained by deleting all arrows emerging from

Vi. To represent the deletion of both pointing (to Vi) and emerging (from Vj) arrows, we use the notation GViVj
.

In the following, we will show the equivalence of conditions (1), (2), and (3). Firstly note that (2) is equivalent to “Y is not
adjacent to W” due to the assumed acyclic of G. Also note that XS ∪X1

M = W ∪W2.

(1)⇒(2) Prove by contradiction. Suppose Y and W are adjacent, then they are also adjacent inG
X0

M

because W∩X0
M = ∅.

As a result, Y and W can not be d-separated by any vertex in G
X0

M

, which contradicts with (1).

(2)⇒(3) Since Y 6∈ Pa(X1
M ), we have:

p(y|xS , do(xM )) =
p(y|pa(y))

∏
i∈S p(xi|pa(xi))∫

p(y|pa(y))
∏
i∈S p(xi|pa(xi))dy

=
p(y|pa(y))

∏
i∈S p(xi|pa(xi))

∏
Xi∈X1

M
pe(xi|pa(xi))∫

p(y|pa(y))
∏
i∈S p(xi|pa(xi))

∏
Xi∈X1

M
pe(xi|pa(xi))dy

=
p(y,xS ,x

1
M |do(x0

M ))∫
p(y,xS ,x1

M |do(x0
M ))dy

= p(y|xS ,x1
M , do(x

0
M )), (4)

which indicates P (Y |XS , do(xM )) = P (Y |XS ,X
1
M , do(x

0
M )) = P (Y |W,W2, do(x

0
M )).

Unfold P (Y |W,W2, do(x
0
M )) with the definition of interventional distribution, we have:

p(y|w,w2, do(x
0
M )) =

p(y|pa(y))
∏
Xj∈W pe(xj |pa(xj))

∏
Xi∈W2

pe(xi|pa(xi))∫
p(y|pa(y))

∏
Xj∈W pe(xj |pa(xj))

∏
Xi∈W2

pe(xi|pa(xi))dy
. (5)

Since Pa(Y ) ∩ {X0
M ,W} = ∅ and ∀Xi ∈W2,Pa(Xi) ∩ {X0

M ,W} = ∅, we further have:

p(y|w,w2, do(x
0
M )) =

pe(y,w2)
∏
Xj∈W pe(xj |pa(xj))∫

pe(y,w2)
∏
Xj∈W pe(xj |pa(xj)dy

. (6)

If Y and W are not adjacent, then ∀Xj ∈W, Y /∈ Pa(Xj). As a result, p(y|w,w2, do(x
0
M )) = p(y,w2)∫

p(y,w2)dy
= p(y|w2),

which means P (Y |XS , do(xM )) = P (Y |W,W2, do(x
0
M )) = P (Y |W2) can degenerate to a conditional distribution.
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(3)⇒(1) Prove by contradiction. We show that if Y 6⊥⊥G
X0

M

W|W2, i.e., (1) does not hold, then P (Y |XS , do(xM )) can

not degenerate to any conditional distribution, i.e., (3) does not hold.

Specifically, we first show Y 6⊥⊥G
X0

M

W|W2 ⇒ P (Y |XS , do(xM )) 6= P (Y |W2, do(x
0
M )). Then, we show

P (Y |XS , do(xM )) 6= P (Y |W2, do(x
0
M )) means P (Y |XS , do(xM )) can not degenerate to any conditional distribution.

The first derivation is straight-forward. If Y 6⊥⊥G
X0

M

W|W2, then under Asm. 3.2, we have P (Y |W,W2, do(x
0
M )) 6=

P (Y |W2, do(x
0
M )), which means P (Y |XS , do(xM )) = P (Y |W,W2, do(x

0
M )) 6= P (Y |W2, do(x

0
M )).

Next, we will prove the second derivation. Suppose P (Y |XS , do(xM )) = P (Y |W′,W2, do(x
0
M )). We will show if

W′ 6= ∅, then the “do” can not be removed with either rule-2 (action to observation) or rule-3 (deletion of action) in the
inference rules (Pearl, 2009). According to Corollary 3.4.2 in (Pearl, 2009), the inference rules are complete in the sense
that if the intervention probability (with “do”) can be reduced to a probability expression (without “do”), the ”reduction”
can be realized by a sequence of transformations, each conforming to one of the inference Rules 1-3. Since only rule-2 and
rule-3 are related to the disappearance of “do”, it is sufficient to show that rule-2 and rule-3 can not remove the “do”, in
order to prove (1).

Denote X0
M as {X0

M,i}ri=1 and P (Y |W′,W2, do(x
0
M )) as P (Y |W′,W2, do(x

0
M,1), . . . , do(x0M,r)). We first show rule-2

can not remove the “do” on any X0
M,i ∈ X0

M .

Recall rule-2 states that “P (Y |B, do(x), do(z)) = P (Y |B,Z, do(x)) if Y ⊥⊥GXZ
Z|B,X for any disjoint vertex sets

B,X, and Z ”. Prove by contradiction. Suppose rule-2 can remove the “do” on X0
M,i ∈ X0

M , then:

Y ⊥⊥G
X0

M
\{X0

M,i}{X0
M,i
}
X0
M,i|W′,W2,X

0
M\
{
X0
M,i

}
, (7)

where we have Z =
{
X0
M,i

}
,X = X0

M\{X0
M,i},B = W′ ∪W2 in the notation of rule-2.

We explain why Eq. 7 can not be true. Note that X0
M,i ∈ Ch(Y ) and the direct edge Y → X0

M,i is reserved in the graph
G

X0
M\{X0

M,i}{X0
M,i}

, which means that Y and X0
M,i can not be d-separated by any vertex set. Hence, Eq. 7 can not be true.

Then, we show rule-3 can not remove the “do” on all X0
M,i ∈ X0

M . Recall rule-3 states that “P (Y |B, do(x), do(z)) =
P (Y |B, do(x)) if Y ⊥⊥G

X,Z(B)
Z|B,X for any disjoint vertices sets B,X, and Z ”. Here, Z(B) is the set of Z-nodes that

are not ancestors of any B-node in GX. Prove by contradiction. Suppose rule-3 can remove the “do” on X0
M , then:

Y ⊥⊥G
X0

M (W′∪W2)
X0
M |W′ ∪W2, (8)

where we have X = ∅,Z = X0
M ,B = W′ ∪W2,Z(B) = X0

M (W′ ∪W2) in the notation of rule-3.

We explain why Eq. 8 can not be true when W′ 6= ∅. By definition we have W′ ⊆ De
(
X0
M

)
, which means when W′ 6= ∅,

An (W′) ∩X0
M 6= ∅. Therefore, we have X0

M (W′ ∪W2) := X0
M\ (An(W′) ∪W2) 6= X0

M , which is equivalent to
X0
M\(X0

M (W′ ∪W2)) 6= ∅. Suppose X0
M,i ∈ X0

M\(X0
M (W′ ∪W2)), then the edge Y → X0

M,i is reserved in the
graph G

X0
M (W′∪W2)

, which means Y and X0
M,i can not be d-separated by any vertex set and Eq. 8 can not be true.

To conclude, we have proved that when W′ 6= ∅, the “do” on X0
M can not be removed entirely by rule-2 or rule-3.

In the following, we prove under either of conditions (1), (2), (3), we have S∗ = S. When the interventional distribution can
degenerate to a conditional distribution, (Rojas-Carulla et al., 2018) showed that fS(x) := E[Y |xS , do(xM )] satisfies the
following minimax property:

fS(x) = arg min
f∈Fs

max
e∈E

EP e [(Y − f(x))2], (9)

which means S∗ = S. Specifically, under the degeneration condition, they proved the optimality of fS by constructing a
probability distribution P e for any predictor f ∈ Fs, where f has a larger or equal quadratic loss than fS . For the details of
the proof, please refer to Thm. 4 in (Rojas-Carulla et al., 2018).
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A.2. Details of Claim 4.6: Counter-example of S∗ 6= S

Counter-example. Consider the DAG in Fig. 6, which is the same as Fig. 2 (b). We set Y,Xs, Xm to binary variables. We
will show that there exists P (Y ), P (Xs|Xm, Y ) such that fS := E[Y |xs, do(xm)] is not minimax optimal.

𝑌 𝑋! 𝑋"
Figure 6: DAG of the counter example.

We show this by proving the predictor fS has a larger quadratic loss than f∅:

E[(Y − E[Y |xs, do(xm)])
2
] > E[(Y − E[Y |do(xm)])

2
]. (10)

Since we have:

E[(Y − E[Y |xs, do(xm)])
2
] = E[Y 2] + E

[
E2[Y |xs, do(xm)]

]
− 2E[Y · E[Y |xs, do(xm)]],

and E[(Y − E(Y |do(xm)))
2
] = E[Y 2]− E[Y ]2 due to that P (Y |do(xm)) = P (Y ), Eq. (10) is equivalent to:

E
[
E2[Y |xs, do(xm)]

]
> 2E[Y · E[Y |xs, do(xm)]]− E2[Y ]. (11)

Besides, we have:

E
[
E2[Y |xs, do(xm)]

]
=
∑
xs,xm

[[∑
y

p(xs|xm, y)p(xm|y)p(y)

]
· E2[Y |xs, do(xm)]

]
, (12)

E [Y · E[Y |xs, do(xm)]] =
∑
xs,xm

[[∑
y

p(xs|xm, y)p(xm|y)p(y) · y

]
· E[Y |xs, do(xm)]

]
. (13)

Since we have p(y|xs, do(xm)) = p(y)p(xs|xm,y)∑
y p(y)p(xs|xm,y)

, we have:

E[Y |xs, do(xm)] =
p(y = 1)p(xs|xm, y = 1)∑

y p(y)p(xs|xm, y)
. (14)

Substituting Eq. (14) into Eq. (12), (13), we have:

E
[
E2[Y |Xs, do(Xm)]

]
=
∑
xs,xm

[∑
y

p(xs|xm, y)p(xm|y)p(y)

]
·

[
p(y = 1)p(xs|xm, y = 1)∑

y p(y)p(xs|xm, y)

]2 , (15)

E [Y · E[Y |Xs, do(Xm)]]=
∑
xs,xm

[[∑
y

p(xs|xm, y)p(xm|y)p(y) · y

]
·

[
p(y = 1)p(xs|xm, y = 1)∑

y p(y)p(xs|xm, y)

]]

=
∑
xs,xm

[[∑
y

p(xs|xm, y=1)p(xm|y=1)p(y=1)

]
·

[
p(y=1)p(xs|xm, y=1)∑

y p(y)p(xs|xm, y)

]]
. (16)

Denote ay := p(y = 1), p(xm = 1|y) := amy, p(xs = 1|xm, y) = asmy. Because Xs, Xm are both binary variables, the
summation over them traverses over four indicator functions 1(xs = 0, xm = 0), 1(xs = 0, xm = 1), 1(xs = 1, xm = 0),
and 1(xs = 1, xm = 1), which means the left side of Eq. (11) is:
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E
[
E2[Y |xs, do(xm)]

]
=1(xs=1, xm=1) (as11am1ay + as10am0(1− ay))

[
ayas11

ayas11 + (1− ay)as10

]2
+

1(xs=1, xm=0) [as11(1− am1)ay + as10(1− am0)(1− ay)]

[
ayas01

ayas01 + (1− ay)as00

]2
+

1(xs=0, xm=1) [(1− as11)am1ay + (1− as10)am0(1− ay)]

[
ay(1− as11)

ay(1− as11) + (1− ay)(1− as10)

]2
+

1(xs=0, xm=0) [(1−as01)(1−am1)ay + (1−as00)(1−am0)(1−ay)]

[
ay(1−as01)

ay(1−as01) + (1− ay)(1− as00)

]2
. (17)

Similarly, the right side of Eq. (11) is:

2E [Y E[Y |xs, do(xm)]]− E[Y 2] =2
[
1(xs = 1, xm = 1)

a2ya
2
s11am1

ayas11 + (1− ay)as10
+

1(xs = 1, xm = 0)
a2ya

2
s01(1− am1)

ayas01 + (1− ay)as00
+

1(xs = 0, xm = 1)
a2y(1− as11)2am1

ay(1− as11) + (1− ay)as10
+

1(xs = 0, xm = 0)
a2y(1− as01)(1− am1)

ay(1− as01) + (1− ay)(1− as00)

]
− a2y. (18)

Let as10 = 0.001, as11 = 0.999, as00 = as01 = as10 = 0.5, am0 − 2am1 = 1, ay = 0.001, Eq. 11 becomes “994 > −1”,
which means Eq. 10 holds and S∗ 6= S.

A.3. Proof of Thm. 4.8: Worst-case risk identification

Theorem 4.8. Let LS′ := maxh∈B EPh
[(Y −fS′(x))2] be the maximal population loss over {Ph}h∈B for subset S′. Then,

we have LS′ = RS′ . Therefore, we have S∗ := argminS′⊆S LS′ .

Proof. Recall that Ph :=P (Y,XS |do(XM =h(pa(xM ))), where h is a Borel measurable function from Pa(XM ) to XM .

To prove the theorem, we show that the worst-case riskRS′ is attained when the causal factorP e(XM |Pa(XM )) degenerates
to a delta function 1(XM = h∗(pa(xM ))), for some Borel function h∗ : Pa(XM )→ XM .

First, consider the case where XM = {Xm}. TheRS′ expands into:

RS′ = max
e∈E

∫
y

∫
x

[y − fS′(x)]2p(y|pa(y))pe(xm|pa(xm))
∏
i∈S

p(xi|pa(xi))dydx. (19)

Let X̃ := X\(Xm ∪Pa(Xm)) be variables beyond Xm and its parents. Split the integral in Eq. 19 into three parts: the
integral over xm, the integral over pa(xm), and the integral over y, x̃. Denote the last part as:

l(xm,pa(xm)) :=

∫
y

∫
x̃

[y − fS′(x)]2p(y|pa(y))
∏
Xi∈X̃

p(xi|pa(xi))dydx̃. (20)

Then, Eq. 19 becomes:

RS′ = max
e∈E

∫
pa(xm)

∫
xm

l(xm,pa(xm))pe(xm|pa(xm))dxm
∏

Xi∈Pa(Xm)

p(xi|pa(xi))dpa(xm) (21)
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Since in Eq. 21, the only item that varies with e is pe(xm|pa(xm)), we can move the maxe∈E into the inner integral and
have:

RS′ =

∫
pa(xm)

max
e∈E

∫
xm

l(xm,pa(xm))pe(xm|pa(xm))dxm
∏

Xi∈Pa(Xm)

p(xi|pa(xi))dpa(xm). (22)

Let h∗(pa(xm)) := arg maxxm
l(xm,pa(xm)) be a function from Pa(XM ) to XM , we have:

RS′ =

∫
pa(xm)

l(h∗(pa(xm)),pa(xm))
∏

Xi∈Pa(Xm)

p(xi|pa(xi))dpa(xm), (23)

which means the worst-case risk is attained when the causal factor P (Xm|Pa(Xm)) degenerates to a delta function
1(Xm = h∗(pa(xm))). In addition, under Asm. 3.1, l(xm,pa(xm)) is a continues function. By the Maximum Theorem
(Berge, 1963), h∗ := arg maxxm

l(xm,pa(xm)) is upper semi-continuous and thus a Borel function.

When XM contains multiple mutable variables, we can consider the maximization according to the topology order
{XM,1, XM,2, ..., XM,dM }, where XM,i is a mutable variable that is not the ancestor of any other variable in {XM,j |j < i}.
That is, we consider the maxe∈E

∫
xM,i

l(xM,i,pa(xM,i))p
e(xM,i|pa(xM,i))dxM,i sequentially for i = 1, 2, ..., dM .

Such a sequential maximization is plausible because the topology order of mutable variables is identifiable. Please refer to
the discovery of De(Xi) for Xi ∈ XM in Appx. B.1 for details.
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B. Causal discovery and structural identifiability
Minimax theories in Sec. 4 rely on the identifiability of specific causal structures, such as XM ,W. In this section, we will
prove the structural identifiability by offering causal discovery algorithms to recover them, with data from Etr. Specifically,
we first show the discovery of several basic causal structures, then use them to prove Prop. 4.4 and Prop. 4.9.

B.1. Basic causal structures

In this section, we show the discovery of several basic causal structures: XM , X0
M , X0

M ∪De(X0
M ), De(Xi) forXi ∈ XM ,

and Pa(Xi) for Xi ∈ XM ∪De(XM ). Our algorithms are inspired by (Huang et al., 2020).

We first introduce some notations. We use the subscript Xi, Xj ∈ X, Vi, Vj ∈ V to denote vertices; the superscript
Vi,Vj ⊆ V to denote vertex sets. Denote Etr as the environmental indicator variable with support Etr. Let Gaug be the
augmented graph (Huang et al., 2020) over V ∪Etr. We consider the causal DAG G as the induced subgraph of Gaug over
V. We have the following notations in Gaug. For two vertex sets Vi,Vj ⊆ V, let Zi,j ⊆ V\{Vi,Vj} be the separating
set such that Vi ⊥⊥ Vj |Zi,j . Denote De,i as the set of vertices along the directed path Etr → · · · → Vi. Let ∆̂i→j be the
estimated Hilbert Schmidt Independence Criterion (HSIC) (Gretton et al., 2007) for Vi → Vj .

Discovery of XM and the causal skeleton. These structures can be identified via Alg. 3. Specifically, under Asm. 3.3, any
mutable variable in E is a mutable variable in Etr. Following (Huang et al., 2020), we assume that if Xi is a mutable variable,
then Xi and Etr are not independent given any other subset of V\{Xi}. Under the above assumptions and Asm. 3.2, we
have Xi ∈ XM iff E → Xi in Gaug.

Algorithm 3 Recovery of XM and the causal skeleton.

1. Start with XM←∅. For each i, test if Vi ⊥⊥ Etr or if there exist a separating set Zi,e. If Vi 6⊥⊥ Etr and there is no such
seperating set, update XM←XM ∪ Vi.

2. Start with an undirected graphG0 including edges between any two vertices in V and the arrow Etr → Vi for Vi ∈ XM .
For each pair i, j, if Vi ⊥⊥ Vj or there exists a separating set Zi,j , remove the edge Vi − Vj from G0.

Discovery of X0
M . We can use Etr and the v-structure Etr → Xi ← Y to detect X0

M := XM ∩Ch(Y ). Specifically, for
Xi ∈ XM that is adjacent to Y , test whether Y 6⊥⊥ Etr|Zy,e ∪Xi. If the 6⊥⊥ holds, orient Y → Xi and add Xi to X0

M .

Discovery of X0
M ∪De(X0

M ). This structure can be identified via Alg. 4. Alg. 4 searches vertices adjacent to X0
M in a

breadth-first manner. The set A defined in line-1 is the final output. The set B is an instrumental set that starts with X0
M

and ends with ∅. During the search, B stores the vertices in X0
M that has not been searched for the children. Once a vertex

Xi ∈ B has been searched, it is excluded from the set B (line-18) and the children of Xi are added to B if it has not been
visited (line-8 and line-14).

Specifically, in lines 5 to 10, we consider the vertex Xj ∈ Neig(Xi) such that Xj 6∈ XM . Since Xj 6∈ XM , Etr and Xj are
not adjacent. Since Xi ∈ X0

M ∪De(X0
M ), we have Etr → · · · → Xi−Xj . Together, these mean we can use the v-structure

Etr → · · · → Xi ← Xj to decide whetherXj ∈ X0
M ∪De(X0

M ). In lines 11 to 19, we consider the vertexXj ∈ Neig(Xi)
such that Xj ∈ XM . We first explain why it is unnecessary to consider the case of Xj ∈ XM and Xj ∈ Neig(Y ). If
Xi ∈ Pa(Y ), Xj can not be in X0

M ∪De(X0
M ) because otherwise it would induce a directed cycle. If Xj ∈ Ch(Y ),

we have Xj ∈ X0
M and has been included in set A in the beginning. As a result, the remaining case is Xj ∈ XM and

Xj 6∈ Neig(Y ). In this case, we have Xi ∈ De(Y ), which means we can use the v-structure Y → · · · → Xi ← Xj to
decide whether Xj ∈ X0

M ∪De(X0
M ).

Discovery of De(Xi) for Xi ∈ XM . This structure can be identified via Alg. 5. Alg. 5 first searches vertices adjacent to
XM and orients Xi −Xj for Xi ∈ XM in order to detect Xi’s children. It then searches Xi’s children in a similar manner
to identify Xi’s descendants.

Specifically, in lines 5 to 12, we consider the vertex Xj ∈ Neig(Xi) such that Xj 6∈ XM . The orientation of Xi −Xj

can be decided by the v-structure Etr → · · · → Xi ← Xj since Etr is not adjacent to Xj . In lines 13 to 23, we consider
the vertex Xj ∈ Neig(Xi) such that Xj ∈ XM . Following (Huang et al., 2020), we decide the orientation of Xi −Xj by
comparing the estimated HSIC values ∆̂i→j and ∆̂j→i.
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Discovery of Pa(Xi) for Xi ∈ XM ∪De(XM ). This structure has been identified in lines 11 and 19 of Alg. 5.

Algorithm 4 Recovery of X0
M ∪De(X0

M )

1: Start with A,B← X0
M and visited(Xi)← false.

2: while B 6= ∅ do
3: for Xi ∈ B do
4: for Xj ∈ Neig(Xi) do
5: if Xj 6∈ XM and Xj ⊥⊥ Etr|(Ze,j ∪Xi)\Dj,e then
6: A←A ∪Xj .
7: if visited(Xj) = false then
8: B← B ∪Xj .
9: end if

10: end if
11: if Xj ∈ XM and Xj 6∈ Neig(Y ) and Xj ⊥⊥ Y |(Zj,y ∪Xi)\Dy,i then
12: A← A ∪Xj .
13: if visited(Xj) = false then
14: B← B ∪Xi.
15: end if
16: end if
17: end for
18: B← B \ {Xi}.
19: end for
20: end while

Algorithm 5 Recovery of De(Xi) for Xi ∈ XM .

1: Start with B← XM and visited(Xi)← false.
2: while B 6= ∅ do
3: for Xi ∈ B do
4: for Xj ∈ Neig(Xi) do
5: if Xj 6∈ XM and Xj ⊥⊥ Etr|(Ze,j ∪Xi)\Dj,e then
6: orient Xi −Xj as Xi → Xj .
7: if visited(Xj) = false then
8: B← B ∪Xj .
9: end if

10: else
11: orient Xi −Xj as Xi ← Xj .
12: end if
13: if Xj ∈ XM and ∆̂i→j < ∆̂j→i then
14: orient Xi −Xj as Xi → Xj .
15: if visited(Xj) = false then
16: B← B ∪Xj .
17: end if
18: else
19: orient Xi −Xj as Xi ← Xj .
20: end if
21: end for
22: B← B\Xi.
23: end for
24: end while
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B.2. Proof of Prop. 4.4: Testability of Thm. 4.1

Proposition 4.4. Under Asm. 3.1-3.3, we have that i) the W is identifiable; and ii) the condition Y 6→W is testable from
{De}e∈Etr .

Proof. W=(X\X0
M )∩De(X0

M )=(X\X0
M )∩

{
X0
M ∪De(X0

M )
}

is identifiable because X0
M and X0

M ∪De(X0
M ) are

identifiable, as shown in Appx. B.1. Since all vertices in W are descendants of Y , we have Y 6→ Xi, Xi ∈W iff Xi is not
adjacent to Y in the causal skeleton of Gaug.

B.3. Proof of Prop. 4.9: Identifiability of Thm. 4.8

Proposition 4.9. Under Asm. 3.1-3.3, the Ph, fS′ , and hence LS′(h) are identifiable.

Proof. To identify Ph, we need to use h(Pa(XM )) to replace XM , followed by regenerating Xi from PaGXM
(Xi) for

Xi ∈ DeGXM
(XM ). Here, PaGXM

(Xi) denotes the parents of Xi in the graph GXM
.

To identify fS′ , we need to sample from P (Y,XS′ |do(xM )), which involves intervening XM and regenerating Xi from
PaGXM

(Xi) for Xi ∈ DeGXM
(XM ).

These structures, i.e., XM , De(Xi) for Xi ∈ XM , and Pa(Xi) for Xi ∈ XM ∪ De(XM ) are readily identified in
Appx. B.1.
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C. Empirical estimation methods
C.1. Estimation of fS′

We adopt soft-intervention to replace P e(XM |Pa(XM )) with P (XM ) and hence define:

P ′(X, Y ) = P (Y |Pa(Y ))P (XM )
∏
i∈S

P (Xi|Pa(Xi)), (24)

which converts the estimation of fS′ to a regression problem, i.e., fS′(x) = EP ′ [Y |xS′ ,xM ]. To generate data distributed
as P ′, we first randomly permute XM in a sample-wise manner to generate data from P (XM ). We then regenerate data for
Xi ∈ DeGXM

(XM ) from PaGXM
(Xi) via estimating the structural equation.

Indeed, we only need to regenerate DeGXM
(XM )∩BlanketGXM

(Y ) since P ′(Y |X) = P ′(Y |BlanketGXM
(Y )). Here,

BlanketGXM
(Y )) is the Markovian blanket of Y in the graph GXM

. Following this intuition, we consider intervening on
another variable set X∗do := X0

M ∪ {De(X0
M )\Ch(Y )} and regenerate Xi ∈ DeG

X∗
do

(X∗do). We show DeG
X∗

do

(X∗do) is
the minimum regeneration set in Prop. C.1.
Proposition C.1. For any admissible set Xdo, we have DeG

X∗
do

(X∗do) ⊆
{
DeGXdo

(Xdo) ∩BlanketGXdo
(Y )
}

, which

means DeG
X∗

do

(X∗do) is the minimum regeneration set.

Proof. We first prove a set Xdo is admissible, i.e., P (Y |X\Xdo, do(xdo)) = P (Y |XS , do(xM )) if and only if X0
M ⊆ Xdo

and {XS ∩Ch(Y )} ∩Xdo = ∅. Note that:

p(y|x\xdo, do(xdo)) =
p(y|pa(y))

∏
Xi∈{X\Xdo} p(xi|pa(xi))∫

p(y|pa(y))
∏
Xi∈{X\Xdo} p(xi|pa(xi))dy

=
p(y|pa(y))

∏
Xi∈{X\Xdo}∩Ch(Y ) p(xi|pa(xi))∫

p(y|pa(y))
∏
Xi∈{X\Xdo}∩Ch(Y ) p(xi|pa(xi))dy

, (25)

and

p(y|xS , do(xM )) =
p(y|pa(y))

∏
i∈S p(xi|pa(xi))∫

p(y|pa(y))
∏
i∈S p(xi|pa(xi))dy

=
p(y|pa(y))

∏
Xi∈XS∩Ch(Y ) p(xi|pa(xi))∫

p(y|pa(y))
∏
Xi∈XS∩Ch(Y ) p(xi|pa(xi))dy

. (26)

Together, Eq. 25 and Eq. 26 indicate P (Y |X\Xdo, do(xdo)) = P (Y |XS , do(xM )) if and only if {X \Xdo} ∩Ch(Y ) =
XS ∩Ch(Y ), which can be re-written as:

{X0
M ∩Xc

do} ∪ {XS ∩Ch(Y ) ∩Xc
do} = XS ∩Ch(Y ), (27)

where Xc
do is the complementary set of Xdo. Eq. 27 holds if and only if X0

M ⊆ Xdo and {XS ∩Ch(Y )} ∩Xdo = ∅.

We then proveX∗do is an admissible set and DeG
X∗

do

(X∗do) = De(X0
M )∩(XS∩Ch(Y )). X∗do is admissible as the conditions

X0
M ⊆ X∗do and {XS∩Ch(Y )} ∩X∗do = ∅ hold by definition. We show DeG

X∗
do

(X∗do) = De(X0
M ) ∩ (XS ∩Ch(Y ))

by showing i) DeG
X∗

do

(X∗do) ⊆ De(X0
M ) ∩ (XS ∩Ch(Y )) and ii) DeG

X∗
do

(X∗do) ⊇ De(X0
M ) ∩ (XS ∩Ch(Y )).

i) DeG
X∗

do

(X∗do) ⊆ De(X0
M )∩ (XS ∩Ch(Y )). Note that X∗do ⊆ X0

M ∪De(XM )0, which means De(X∗do) ⊆ De(X0
M ).

Then, we have:

DeG
X∗

do

(X∗do) = De(X∗do) ∩ (X∗do)
c = De(X∗do) ∩ (X0

M )c ∩ {De(X0
M ) \Ch(Y )}c

= De(X∗do) ∩ {Xc
M ∪Ch(Y )}} ∩ {De(X0

M )c ∪Ch(Y )}
⊆ De(X0

M ) ∩ {Xc
M ∪Ch(Y )c} ∩ {De(X0

M )c ∪Ch(Y )}
= De(X0

M ) ∩Xc
M ∩Ch(Y ) = De(X0

M ) ∩XS ∩Ch(Y )

⊆ De(X0
M ) ∩ (XS ∩Ch(Y )). (28)
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ii) DeG
X∗

do

(X∗do) ⊇ De(X0
M ) ∩ (XS ∩ Ch(Y )). Since X0

M ⊂ X∗do, De(X0
M ) ⊆ De(X∗do). As a result, we have

De(X0
M )∩(XS∩Ch(Y )) ⊆ De(X0

M ) ⊆ De(X∗do) and hence {De(X0
M )∩(XS∩Ch(Y ))\X∗do} ⊆ {De(X∗do)\X∗do}.

Besides, note that X∗do ∩De(X0
M ) ∩ (XS ∩ Ch(Y )) = ∅, which indicates De(X0

M ) ∩ (XS ∩ Ch(Y )) \X∗do = X∗do
and DeGX∗do

(X∗do) = De(X∗do) \ {De(X0
M ) ∩ (XS ∩ Ch(Y ))}. As a result, we have De(X0

M ) ∩ (XS ∩ Ch(Y )) ⊆
DeGX∗do

(X∗do).

Given that any Xdo needs to satisfy the two conditions, we have:

X0
M ⊆ Xdo ⇒ De(X0

M ) ⊆ De(Xdo),

Xdo ⊆ {XS ∩Ch(Y )}c ⇒ {XS ∩Ch(Y )} ⊆ Xc
do. (29)

Therefore, we have:
De(X0

M ) ∩ {XS ∩Ch(Y )} ⊆ De(Xdo) ∩Xc
do, (30)

which means DeG
X∗

do

(X∗do) = De(X0
M ) ∩ (XS ∩Ch(Y )) ⊆ DeGXdo

(Xdo) for any admissible set Xdo.

Remark C.2. The X∗do, DeG
X∗

do

(X∗do), and Pa(Xi) for Xi in DeG
X∗

do

(X∗do) are identifiable according to Appx. B.1.

C.2. Estimation of LS′

We first sample from Ph. Specifically, we replace Xi with h(Pa(Xi)) for Xi ∈ XM and regenerate data for Xi ∈ DeGXM

from PaGXM
(Xi) via estimating the structural equation. We then maximize EPh

[(Y − fS′(x))2] over h to obtain LS′ .
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D. Equivalence relation and the recovery algorithm
We first introduce some notations that will be used in this section. We use the subscript Xi, Xj ∈ X, Vi, Vj ∈ V to denote
variables and vertices; the superscript S′, Si, Sj ⊆ S, V′,Vi,Vj ⊆ V to denote variable and vertex subsets. A path
p :=< V1, V2, ..., Vl > is a sequence of distinct vertices with Vi being adjacent to Vi+1 for i = 1, 2, ..., l − 1. We use l to
denote the length of the path. The path p can be blocked by a vertex set V′ means it can be d-separated by V′ when G is a
DAG, and m-separated by V′ whenG is a Maximal Ancestral Graph (MAG). For a vertex Vi, denote deg(Vi) := |Neig(Vi)|
as its degree. In a MAG, we use C, L to denote the selection set and the latent set, respectively.

D.1. Details of Def. 5.1: Equivalence relation

We first introduce the following lemma, which studies the property of d-separation and m-separation in the difference set.

Lemma D.1. Consider two vertex sets V1,V2, and a path p. If p can be blocked by V1 ∪V2 but can not be blocked by the
difference set (V1 ∪V2)\V2 = V1, then the set V2 contains a non-collider on p.

Proof. We first show p contains at least one non-collier. Prove by contradiction. Suppose all vertices on p are colliders.
Since p can not be blocked by V1, we have ∀Vi ∈ p, Vi ∈ V1 or ∃Vj ∈ De(Vi) such that Vj ∈ V1. This means p can not
be blocked V1 ∪V2, which is a contradiction.

We then prove the lemma by considering two cases: i) p contains only non-colliders; ii) p contains both colliders and
non-colliders. For i), since p can not be blocked by V1, all vertices on p are not in V1. Since p can be blocked by V1 ∪V2,
at least a vertex on p is in V2, thus proving the lemma. For ii), since p can not be blocked by V1, ∀Vi ∈ p, we have: if Vi is
a non-collider on p, Vi 6∈ V1; otherwise Vi is a collider on p, Vi ∈ V1 or ∃Vj ∈ De(Vi) such that Vj ∈ V1, thus in the set
V1 ∪V2. Therefore, the set V2 must contain a non-collider on p, otherwise, p will not be blocked by V1 ∪V2.

Definition 5.1. Consider a general causal graph G over an output Y and covariates X. Let ∼G be an equivalence relation
on all subsets of {1, ...,dim(X)}. We say Si ∼G Sj if ∃Sij ⊆ Si ∩ Sj such that:

Y ⊥⊥G X(Sij)c |XSij , where (Sij)c := (Si ∪ Sj)\Sij . (31)

Proof. It is obvious that the ∼G is reflective (Si ∼G Si) and symmetric (Si ∼G Sj ⇒ Sj ∼G Si). In the following, we
will show it is also transitive, i.e., Si ∼G Sj , Sj ∼G Sk ⇒ Si ∼G Sk. We show this by constructing an intersection set
Sik ⊆ Si ∩ Sk such that Y ⊥⊥G X(Sik)c |XSik .

Since Si ∼G Sj , we have ∃Sij s.t. Y ⊥⊥G X(Sij)c |XSij . Similarly for Sj ∼G Sk, we have ∃Sjk s.t. Y ⊥⊥G X(Sjk)c |XSjk .
In the following, we will construct the intersection set Sik from Sij ∩ Sjk.

𝐗!!"∩!"#

𝐀 𝐁
𝐗!!"

𝐗!"

(a)

𝐗!!∪!"∪!#

𝐃

𝐅

𝐗!!"∩!"#

(b)

𝐗!!"∪!"#𝐗!"#

Figure 7: Illustration of union and intersection of XSij and XSjk .

Denote A := XSij\(Sij∩Sjk) and B := XSjk\(Sij∩Sjk), as shown by Fig. 7 (a). We first show Y ⊥⊥G A|XSij∩Sjk and
Y ⊥⊥G B|XSij∩Sjk . We show this by proving that any path between Y and A (similarly B) can be blocked by XSij∩Sjk .
Prove by contradiction. Suppose there is a path p0 :=< Y,X1, ..., Xl0 > between Y and Xl0 ∈ A such that p0 can not
be blocked by XSij∩Sjk . We have p0 can be blocked by the set XSjk . This is because Xl0 ∈ A ⊆ XSj\Sjk ⊆ X(Sjk)c

and Y ⊥⊥G X(Sjk)c |XSjk . Therefore, by Lemma D.1, the set B = XSjk\XSij∩Sjk contains a non-collider denoted as Xl1

on p0. Hence, we have a subpath of p0, i.e., p1 :=< Y,X1, ..., Xl1 > between Y and Xl1 ∈ B such that p1 can not be
blocked by XSij∩Sjk . Here, we have p1 can be blocked by the set XSij . This is because Xl1 ∈ B ⊆ XSj\Sij ⊆ X(Sij)c
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and Y ⊥⊥G X(Sij)c |XSij . Therefore, by Lemma D.1, the set A = XSij\XSij∩Sjk contains a non-collider denoted as Xl2

on p1. Repeating like this, we have either X1 ∈ A ⊆ X(Sjk)c or X1 ∈ B ⊆ X(Sij)c . Since X1 is adjacent to Y , this
contradicts with Y ⊥⊥G X(Sjk)c |XSjk or Y ⊥⊥G X(Sij)c |XSij .

Further, denote D := X(Sij∪Sjk)\(Sij∩Sjk) and F := X(Si∪Sj∪Sk)\(Sij∩Sjk), as shown in Fig. 7 (b). We have shown
Y ⊥⊥G D|XSij∩Sjk by combining the statements Y ⊥⊥G A|XSij∩Sjk and Y ⊥⊥G B|XSij∩Sjk . Next, we will show
Y ⊥⊥G F|XSij∩Sjk . This means we can construct the intersection set Sik := (Sij ∩ Sjk) ⊆ (Si ∩ Sk) such that
Y ⊥⊥G X(Sik)c |XSik , and hence proving Si ∼G Sk by definition.

We show this by proving that any path between Y and F can be blocked by XSij∩Sjk . Prove by contradiction. Suppose
there is a path p0 :=< Y,X1, ..., Xl0 > between Y and Xl0 ∈ F such that p0 can not be blocked by XSij∩Sjk . We have
p0 can be blocked by XSij or XSjk . This is because we have either Xl0 ∈ F ⊆ X(Sij)c or Xl0 ∈ F ⊆ X(Sjk)c and
Y ⊥⊥G X(Sij)c |XSij , Y ⊥⊥G X(Sjk)c |XSjk . Without loss of generality, we consider Xl0 ∈ X(Sij)c and p0 can be blocked
by XSij . By Lemma D.1, the set XSij\(Sij∩Sjk) contains a non-collider denoted as Xl1 on p1. Hence, we have a subpath
of p0, i.e., p1 :=< Y,X1, ..., Xl1 > between Y and Xl1 ∈ XSij\(Sij∩Sjk) such that p1 can not be blocked by XSij∩Sjk .
This contradicts with the statement Y ⊥⊥G D|XSij∩Sjk , because XSij\(Sij∩Sjk) ⊆ X(Sij∪Sjk)\(Sij∩Sjk) = D.

To conclude, we have proved∼G is reflective, symmetric, and transitive. Hence,∼G is a legitimate equivalence relation.

D.2. Proof of Prop. 5.4: Correctness of Alg. 2

Proposition 5.4. For each input graph that is Markov equivalent to the ground-truth graph G, Alg. 2 can correctly recover
Pow(S)/∼G.

Proof. We first show, under Asm .3.1, 3.2, all Markovian equivalent graphs have the same equivalence classes. Specifically,
Markovian equivalent graphs have the same d-separation and m-separation (Pearl, 2009; Zhang, 2008). Because the
equivalence relation is defined on d-separation and m-separation, they also have the same equivalence classes.

We then introduce some notions that will be used in the proof. We use the unbolded letter, e.g., Si, T i, to denote variable
sets, and the bolded letter, e.g., Pow(S),Ri, to denote sets whose elements are variable sets. Recall that the equivalence
class of subset Si is denoted as [Si] := {Sj |Sj ∼G Si}. We say a vertex Xi is Y ’s l-neighbour if the shortest path between
Y and Xi has length l. As a special case, say Xi as the 0-neighbour of Y if there is no path between Y and Xi. Define
lG = 0 if Neig(Y ) = ∅, and lG = 1, 2, ..., l if Y has 1, 2, ..., l-neighbours, respectively.

In the following, we will prove the correctness of Alg. 2 by induction on lG.

Base. lG = 0⇒ Neig(Y ) = ∅. Hence, any two subsets Si, Sj ⊆ S are equivalent and Pow(S)/∼G= {[S]} = recover(G).

Induction hypothesis. Suppose any graph G with lG ≤ l has Pow(S)/∼G= recover(G).

Step. Consider G with lG = l + 1.

Denote all the 2deg(Y ) subsets of Neig(Y ) as T 1, T 2, ..., T 2deg(Y )

. We can partition the Pow(S) into 2deg(Y ) sets
R1,R2, ...,R2deg(Y )

, with Pow(S) = ∪2deg(Y )

i=1 Ri, Ri ∩Rj = ∅ for i 6= j, and Ri := {Si|Si ⊆ S, Si ∩Neig(Y ) = T i}.
Now, consider a subset Si ∈ Ri and another subset Sj ∈ Rj , we have Si 6∼G Sj , because Si ∩Neig(Y ) 6= Sj ∩Neig(Y ).
Therefore, the equivalence classes in Pow(S) is the union of the equivalence classes in R1,R2, ...,R2deg(Y )

. Formally:

Pow(S)/∼G= ∪2
deg(Y )

i=1 Ri/∼G . (32)

A distinct virtue of the MAG constructed in Alg. 2 in line-7 is that it can represent d-separation and m-separation when
selection and latent variables exist. Specifically, given any causal graph G over V = O ∪ L ∪C, the MAG MG over O,
with C as the selection set and L as the latent set, satisfies that for any disjoint subsets A,B,Z ⊆ O, A ⊥⊥MG

B|Z if and
only if A ⊥⊥G B|Z ∪C (Zhang, 2008). Therefore, for the MG over S\Neig(Y ), with S′ as the selection set, Neig(Y )\S′
as the latent set, constructed in line-7, we have Si, Sj ⊆ S\Neig(Y ) are equivalent in MG if and only if Si ∪ S′, Sj ∪ S′
are equivalent in G.

Formally, denote Ri′ as the set attained via removing T i2 from each element of Ri, denote M i
G as the MAG constructed

in line-7 with T i as the selection set, and Pi as the set attained via adding T i to each subset in each equivalence class in

2Note that the T i here equals the S′ in the i-th loop, in line-6 of Alg. 2.
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Ri′/∼Mi
G

, we have:
Ri/∼G= Pi. (33)

Then, by Eq. 32 and Eq. 33, we have:
Pow(S)/∼G= ∪2

deg(Y )

i=1 Pi. (34)

Since lMi
G
≤ l, by the induction hypothesis, we have Pi = recover(M i

G). According to lines 9 and 10 of the Alg. 2, we

have Pow(S)/∼G= ∪2deg(Y )

i=1 recover(M i
G) = recover(G).
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E. Complexity analysis
We first introduce some notations and definitions that will be used in this section. We omit the subscript and denote
GS as G, dS as d for brevity. We use the subscript Xi, Xj ∈ X, Vi, Vj ∈ V to denote variables and vertices; the
superscript S′, S′′ ⊆ S, Xi,Xj ⊆ X, and Vi,Vj ⊆ V to denote variable and vertex subsets. For a vertex Vi, denote
deg(Vi) := |Neig(Vi)| as its degree. Unless otherwise specified, the causal graph in this section can be either a DAG or a
Maximal Ancestral Graph (MAG). In a MAG, we use C, L to denote the selection set and the latent set, respectively. In a
causal graph, we use ∗−∗ to denote an edge with any possible orientation (→,← for a DAG;→,←,↔,− for a MAG).

A chunk vertex is a vertex of degree 2. Recall a chain vertex if a vertex of degree ≤ 2. A path p :=< V1, V2, ..., Vl > is a
sequence of distinct vertices with Vi being adjacent to Vi+1 for i = 1, 2, ..., l − 1. The length of the path p is l. The path p
can be blocked by a vertex set Vi means it can be d-separated by Vi when G is a DAG, and m-separated by V′ when G is
a MAG. A tree is an undirected graph in which any two vertices are connected by exactly one path. In a rooted tree, the
distance of a vertex Vi to the root is the length of the path between them. The parent of a vertex Vi is the vertex connected to
Vi on the path to the root. A child of a vertex Vi is a vertex of which Vi is the parent. A leaf is a vertex with no child. An
internal vertex is a vertex that is not a leaf.

We represent time complexity with the following notions:

1. the Big-O notation f(d) = O(g(d)), which means f is bounded above by g asymptotically, i.e., ∀k > 0,∃ d0,∀d >
d0, |f(d)| ≤ kg(d).

2. the Small-ω notation f(d) = ω(g(d)), which means f dominates g asymptotically, i.e., ∀k > 0,∃ d0,∀d > d0, f(d) >
kg(d).

3. the Big-Θ notation f(d) = Θ(g(d)), which means f and g have asymptotically the same rank, i.e., ∃ k1 > 0,∃ k2 >
0,∃ d0,∀d > d0, k1g(d) ≤ |f(d)| ≤ k2g(d).

4. f = P(d) if f has a polynomial complexity w.r.t. d, f = NP(d) if the complexity is larger than any polynomial
function.

E.1. Complexity of Alg. 2: Equivalence classes recovery

We first introduce the following lemma, which studies the number of leaf vertices in a tree.

Proposition E.1 (Number of leaf vertices in a tree). In a tree, denote dL as the number of leaf vertices, d>2 as the number
of non-chain vertices. Then, we have dL ≥ d>2 + 2.

Proof. Denote dT as the number of all vertices, then, by the handshaking lemma, we have:

dL + 2(dT − dL − d>2) + 3d>2 ≤
dT∑
i=1

deg(Vi) = 2(dT − 1), (35)

which indicates dL ≥ d>2 + 2.

Proposition E.2. The time complexity of Alg. 2 is Θ(NG), hence it can be bounded by O(NG).

Proof. Alg. 2 is a recursive algorithm, its complexity is decided by the size of the recursion tree.

Specifically, in the recursion tree of Alg. 2, the number of all vertices dT equals to the complexity of Alg. 2, while the
number of leaf vertices dL equals to NG. Each internal vertex in the recursion tree has at least two children because the
for-loop in line 6 executes at least twice. Since each internal vertex also has a parent, its degree > 2. Then, by Lemma E.1,
dT is at most twice as dL. Hence, the complexity of Alg. 2 is Θ(NG).
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E.2. Preliminary results for complexity analysis

Lemma E.3. If f(d) = ω(log(d)), then 2f(d) = ω(dm) for any constant m. In other words, 2f(d) = NP(d).

Proof. By the definition of f(d) = ω(log(d)), ∀k + 1 > 0,∃ d0 such that ∀d > d0f(d) > (k + 1)(log(d)) = klog(d) +
log(d). As a result, ∀k > 0,∀m + 1 > 0,∃ d1 := max{d0, log(k)} such that ∀d > d1, f(d) > mlog(d) + log(d) >
mlog(d) + log(k), which is equivalent to have 2f(d) > knm. Thus, we have 2f(d) = ω(dm) by definition.

Claim E.4 (Chain). For any causal graph G whose skeleton is a chain, i.e., Y ∗−∗Xd ∗−∗Xd−1 ∗−∗ · · · ∗−∗X1, we
have NG = d+ 1.

Proof. We prove this claim with Alg. 2 and an induction on d.

Base. d = 1, NG = 2 = d+ 1.

Induction hypotheses. Suppose NG = d+ 1 holds for any chain with d vertices.

Step. For a chain with d + 1 vertices. We consider the case when Xd+1 is a collider (similarly a non-collider). With
{Xd+1} as the selection set, the induced MAG is Y ∗−∗ Xd ∗−∗ Xd−1 ∗−∗ · · · ∗−∗ X1, which is a chain with d
vertices and has d+ 1 equivalence classes by the induction hypotheses. With ∅ as the selection set, the induced MAG is
Y Xd ∗−∗Xd−1 ∗−∗ · · · ∗−∗X1 and has 1 equivalence class. Therefore, we have NG = d+ 1 + 1 = d+ 2.

Claim E.5 (Circle). For any causal graph G whose skeleton is a circle, i.e., Y ∗−∗Xd ∗−∗Xd−1 ∗−∗ · · · ∗−∗X1 and
Y ∗−∗X1, we have NG = (d2 + d+ 2)/2 = Θ(d2).

Proof. We prove the claim with Alg. 2 and Claim E.4. Denote a circle with d vertices as Gd.

Consider the case when Xd is a collider (similarly a non-collider). With {Xd+1} as the selection set, the induced MAG
is Y ∗−∗Xd ∗−∗ · · · ∗−∗X1 and Y ∗−∗X1, i.e., a circle with d− 1 vertices. With ∅ as the selection set, the induced
MAG is Y ∗−∗X1 ∗−∗ · · · ∗−∗Xd−1, i.e., a chain with d− 1 vertices. Hence, we have NGd

= d+NGd−1
, which means

{NGd
}d is an arithmetic sequence and NGd

= Θ(d2).

Lemma E.6 (Adding/deleting an edge). For any causal graph G, adding an edge does not decrease NG, deleting an edge
does not increase NG.

Proof. For a causal graph G0, add an edge in it and call the resulting graph G1 (which can also be viewed as deleting an
edge in G1 and getting a graph G0). We prove NG0

≤ NG1
by showing ∀S′, S′′, S′ 6∼G0

S′′ ⇒ S′ 6∼G1
S′′.

Prove by contradiction. Suppose there are S′, S′′ such that S′ 6∼G0
S′′ and S′ ∼G1

S′′. By S′ ∼G1
S′′, we have

∃S∩ ⊆G1
S′ ∩ S′′ such that Y ⊥⊥G1

XSc
∩ |XS∩ . Because adding an edge does not change the vertex sets, we have

S∩ ⊆G0
S′ ∩ S′′. Because S′ 6∼G0

S′′, we have Y 6⊥⊥G0
XSc
∩ |XS∩ . In other words, there is a path p in G0 between Y and

XSc
∩ such that p can not be blocked by XS∩ .

In the following, we show that in G1 the path p can not be blocked by XS∩ , neither; which contradicts with Y ⊥⊥G1

XSc
∩ |XS∩ . Specifically, p can not be blocked by XS∩ in G0 means XS∩ does not contain any non-collider on p, and XS∩

contains every collider (or its descendants) on p in G0. Because in G1, p is still a path between Y and XSc
∩ , and any collider

Xi on p in G0 is still a collider on p in G1. Any vertex in De(Xi), where Xi is a collider on p in G0, is still a descendant
of the collider on p in G1. Any non-collider on p in G0 is still a non-collider on p in G1. We have the path p can not be
blocked by XS∩ in G1, neither.

Lemma E.7 (Melting property). For a causal graph G over X ∪ Y . Consider three three disjoint non-empty vertex sets C,
L, and O := X\(L ∪C). Let MG be the MAG constructed3 over O, with C as the selection set, L as the latent set. Then,
we have NG > NMG

.

Proof. Recall that Alg. 2 traverses over every S′ ⊆ Neig(Y ) and constructs 2deg(Y ) MAGs, and NG is the summation of
the number of equivalence classes in the 2deg(Y ) MAGs.

3We say that the MG is constructed from G via “melting” vertices in C and L.
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Now, modified Alg. 2 in the following way. For element S′ ⊆ Neig(Y ), if S′ matches < C,L >4, construct a MAG and
recover the equivalence classes in it; Otherwise, ignore S′ and continue. In this regard, the modified algorithm recovers the
equivalence classes in MG. Since parts of the 2deg(Y ) MAGs are ignored, we have NG > NMG

.

Claim E.8 (Complexity of tree). For any causal graph G whose skeleton is a tree with dL leaves, NG = ω(cdL) for some
1 < c < 2.

Proof. We first prove the following claim. Suppose the skeleton of G is a tree with dL leaves, every internal vertex of the
tree is a non-chain vertex, then NG = ω(cdL) for some 1 < c < 2.

Recall that an inducing path p with respect to < C,L > between V1 and V2 is a path where every non-endpoint vertex on p
is either in L or a collider, and every collider on p is an ancestor5 of either V1, V2, or a member of C. Two vertices in the
MAG are adjacent if there is an inducing path between them with respect to < C,L >.

1. To show NG = ω(cdL), we can use Lemma E.7 and show ∃ sets O,C,L such that:

(a) there is an inducing path w.r.t. < C,L > between Y and every vertex in O, and

(b) |O| = Θ(dL).

2. Put vertices in G into different layers according to their distances from Y . To prove 1., we can construct G layer by layer
and show that every time the number of leaves increases by r, ∃ rules to adjust the sets O,C,L such that:

(a) there is an inducing path w.r.t. < C,L > between Y and every vertex in O, and

(b) |O| increases by at least
⌊
r
2

⌋
.

3. Note that any newly added vertex is connected to an existing leaf vertex, otherwise, we should have added it in the
previous layer. Any newly added vertex is only connected to one existing leaf vertex, otherwise, the graph is not a tree. As
a result, to prove 2., we can consider adding vertices Xi1 , ..., Xir (r ≥ 2) to an existing leaf vertex VL and provide rules
satisfied properties (a) and (b) in 2..

We first introduce some notations that will be used in the rules. Denote the edge between VL and its parent PaL in the tree
as EL, edges between VL and its children in the tree, i.e., Xi1 , ..., Xir , as Ei1 , ..., Eir , respectively. Call VL as a complete
(non-)collider if it is a (non-)collider on any path pj :=< PaL, VL, Xij > for j = 1, 2, ..., r.

The rules are given in Alg. 6, and their validity is explained as follows:

i) Rule-1 (line 1 to line 2). Because L = C = ∅ and Xi1 , ..., Xir are adjacent to Y , the requirement in 2. (a) is satisfied.
The number of leaves increases by r − 1, and |O| increases by r, the requirement in 2. (b) is also satisfied.

ii) Rule-2 (line 3 to line 31), where VL is a covariate vertex. VL ∈ O indicates there is an inducing path between Y and VL.
When VL is a complete collider (line 4 to line 6) and put into C, the inducing path is extended to each vertex in Xi1 , ..., Xir

and 2. (a) holds. The number of leaves increase by r − 1, and |O| increases by r − 1, which means 2. (b) also holds. When
VL is a complete non-collider (line 7 to line 9), the proof is similar.

Otherwise, i.e., VL is a collider on some paths, and a non-collider on the other paths, which indicates EL has an arrowhead
on VL. We first look at the case where r = 2 (line 11 to line 20), then look at the cases where r ≥ 3 (line 21 to line 30).

When r = 2 (line 11 to line 20), without loss of generality, suppose Ei1 has a tail on VL, Ei2 has an arrowhead on VL. If
Ei1 also has a tail on Xi1 and the edge is VL −Xi1 , which means VL is ancestor of a member of selection set. Besides,
VL is a non-collider on path < PaL, VL, Xi1 > and a collider on the path < PAL, VL, Xi2 >. As a result, when VL is put
into L and Xi1 , Xi2 are put into O, there are inducing paths between Y and Xi1 , Xi2 (2. (a) holds). Similarly, when Ei1 is
VL → Xi1 , putting Xi1 into C makes sure VL is a collider on the path < PAL, VL, Xi2 > with a descendant in C, thus 2.
(a) holds. In both situations, the number of leaves increases by 1, and |O| also increases by 1, which indicates 2. (b) holds.

4S′ matches < C,L > means Neig(Y ) ∩C ⊆ XS′ and (Neig(Y ) ∩ L) ⊆ (Neig(Y )\XS′ .
5V1 is called an ancestor of V2 if V1 = V2 or there is a directed path from V1 to V2.
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Algorithm 6 Rules to adjust the sets.

1: if VL is Y then
2: O.add(Xi1 , ..., Xir ).
3: else if VL ∈ O then
4: if VL is a complete collider then
5: O.remove(VL), C.add(VL).
6: O.add(Xi1 , ..., Xir ).
7: else if VL is a complete non-collider then
8: O.remove(VL), L.add(VL).
9: O.add(Xi1 , ..., Xir ).

10: else
11: if r = 2 then
12: suppose Ei1 has a tail on VL, Ei2 has an arrowhead on VL.
13: O.add(Xi2).
14: if Ei1 has a tail on Xi1 then
15: O.remove(VL), L.add(VL).
16: O.add(Xi1).
17: else
18: keep VL in O.
19: C.add(Xi1).
20: end if
21: else
22: suppose Ei1 has a tail on VL.
23: O.remove(VL), L.add(VL).
24: if Ei1 has a tail on Xi1 then
25: O.add(Xi1 , ..., Xir ).
26: else
27: C.add(Xi1).
28: O.add(Xi2 , ..., Xir )
29: end if
30: end if
31: end if
32: else
33: if VL is a complete collider then
34: keep VL in C.
35: O.add(Xi1 , ..., Xir ).
36: else
37: suppose Ei1 has a tail on VL.
38: C.remove(VL), L.add(VL).
39: if Ei1 has a tail on Xi1 then
40: O.add(Xi1 , ..., Xir ).
41: else
42: C.add(Xi1).
43: O.add(Xi2 , ..., Xir ).
44: end if
45: end if
46: end if

When r ≥ 3 (line 21 to line 30), because VL is neither a complete collider nor a complete non-collider, one edge of
Ei1 , ..., Eir has a tail on VL. Without loss of generality, we suppose this edge is Ei1 . Then, similarly to the scenario where
r = 2, we put VL into L, Xi1 into O if Ei1 is VL−Xi1 and into C if VL → Xi1 . This makes sure the existence of inducing
paths between Y and vertices newly added to O (2. (a) holds). In addition, the number of leaves increases by r− 1, and |O|
increases by at least r − 2, which indicates 2. (b) holds.
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iii) Rule-3 (line 33 to line 45). Firstly note that if VL is not in O, then VL ∈ C because a leaf is never put into L. Besides,
note that we only put a vertex into C when its parent vertex in the tree has an arrowhead on it. These analyses mean VL ∈ C
and the edge EL has an arrowhead on VL.

When VL is a complete collider (line 33 to line 35), keeping VL ∈ C ensures that existing inducing paths are not damaged
(any ancestor of VL still has a descendant in C). It also ensures that there are inducing paths between Y and vertices newly
added to O, i.e., Xi1 , ..., Xir . These indicate 2. (a) holds. In addition, the number of leaves increases by r − 1, and |O|
increases by r, which indicates 2. (b) holds.

When VL is not a complete collider (line 37 to line 45), there is an edge in Ei1 , ..., Eir such that it has a tail on VL. Without
loss of generality, suppose the edge is Ei1 . When Ei1 also has a tail on Xi1 , VL is an ancestor of a member of the selection
set. As a result, putting VL into L ensures that existing inducing paths are not damaged and there are inducing paths between
Y and vertices newly added to O, i.e., Xi1 , ..., Xir . When Ei1 has an arrowhead on Xi1 , putting VL into C, Xi1 into C
ensures that existed inducing paths are not damaged (any ancestor of VL still has a descendant Xi1 in C) and there are
inducing paths between Y and vertices newly added to O, i.e., Xi2 , ..., Xir . Hence, in both scenarios, 2. (a) holds. In
addition, the number of leaves increases by r − 1, and |O| increases by at least r − 1, which indicates 2. (b) holds.

To conclude, we have proved the claim that any causal graph G whose skeleton is a tree with dL leaves, and every internal
vertex of the tree is a non-chain vertex, has NG = ω(cdL) for some 1 < c < 2. Next, we prove Claim E.8, i.e., any causal
graph G whose skeleton is a tree with dL leaves, has NG = ω(cdL) for some 1 < c < 2.

1. Any interval vertex in G is either a trunk vertex or a non-chain vertex. Use Lemma E.7 to melt all chunk vertices in G
(put a chunk vertex into L if it is a non-collider, into C if otherwise) and call the resulted graph as G. Because G’s skeleton
is a tree and there is no cycle in it, G’s skeleton is also a tree where all interval vertices are non-chain vertices and there are
still dL leaves.

2. By Lemma E.7, we have NG > NG = ω(cdL) and thus NG = ω(cdL) for some 1 < c < 2.

Lemma E.9 (Maximum leaf spanning tree). In a connected undirected graph G with d vertices, if every vertex is either a
non-chain vertex or a vertex of deg= 1, then G has a spanning tree with Θ(d) leaves.

Proof. The proof is similar to Lemma 1 in (Young, 2022). We first discuss a property that any G’s spanning tree satisfies,
then focus on the number of leaves in G’s maximum leaf spanning tree.

Suppose T is a spanning tree of G, denote the number of leaves, chunk vertices, and non-chain vertices in T as d1, d2, d>2,
respectively. Note that a leaf in T is not necessarily a vertex of deg= 1 in G, however, a chunk/non-chain vertex in T must
be a non-chain vertex in G.

Let G′ be a subgraph of T consisting of: i) all the d2 chunk vertices in T , and ii) edges among these chunk vertices in T . As
a result, G′ is a subgraph (maybe not a connected one) of T with maximum degree 2.

We claim the number of edges in G′ is at least d− 4d1 − 1. The proof is as follows. i) Construct a tree T ′ from T by slicing
out all chunk vertices in T . Specifically, for each maximal path pi :=< Xi1 , Xi2 , ..., Xi(l−1)

, Xil > in T such that all the
intermediate vertices Xi2 , ..., Xi(l−1)

are chunk vertices in T , remove the edge Xij −Xi(j+1)
for j = 2, 3, ..., l − 2 and the

intermediate vertices. Then, replace them with an edge Xi1 −Xil (which is not necessarily also in G). ii) In T ′, every
internal vertex is a non-chain vertex and there are still d1 leaves. As a result, in T ′, the number of edges is at most 2d1. iii)
Now compare edges in T ′ and G′. (a) If an edge in T ′ is also in T , then this edge is not in G′ because it is incident with a
non-chain vertex in T and G′ does not contain any of such edge. (b) If an edge in T ′ is constructed by slicing out chunk
vertices in T , then there is two edges missing in G′ compared with T . iv) As a result, for each edge in T ′, G′ is missing at
most two edges compared with T . Hence, G′ is missing at most 2 · 2d1 = 4d1 edges compared with T . Because there are
d− 1 edges in T , there are at least d− 4d1 − 1 edges in G′.

Because there is at most d vertices in G′, we know in G′, the number of vertices minuses the number of edges≤ 4d1. Hence,
G′ contains at most 4d1 paths6. A path with a single vertex indicates there is a vertex in G′ without two neighbors in G′, a
path with ≥ 2 vertices indicates there are two vertices in G′ without two neighbors in G′. Because G′ contains at most 4d1
paths, we know there are at most 8d1 vertices in G′ without two neighbors in G′.

Because G′ contains all the d2 chunk vertices in T , there are at least d2 − 8d1 vertices in G′ having two neighbors in G′.

6counting each isolated vertex in G′ as a path, a path with l vertices has l − 1 edges.
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Back to T , we have at least d2 − 8d1 vertices having the following properties: i) They are chunk vertices in T , and ii) both
of their two neighbors are chunk vertices in T . Call such vertices pipe vertices.

Now we discuss the number of leaves in G’s maximum leaf spanning tree.

Suppose T is a maximum leaf spanning tree. Then, there are at least d2 − 8d1 pipe vertices in T . Let U be a pipe vertex
in T and consider any edge U ∗−∗ V from U that is not in T . We show V must be a leaf in T . Prove by contradiction.
Suppose V is not a leaf in T , then add the edge U ∗−∗ V into T and delete one of the other edges incident to U to break the
cycle (so the result is still a spanning tree). This makes one of U ’s neighbors in T a leaf, which indicates the number of
leaves increases. Because T is a maximum spanning tree, this is a contradiction and V is a leaf in T . To conclude, for every
pipe vertex U , every edge incident to U except the two in T goes to a leaf in T .

Each pipe vertex in T is a non-chain vertex in G, so we have at least d2 − 8d1 pipe vertices in T having deg ≥ 3 in G. As a
result, there are at least d2 − 8d1 edges incident to pipe vertices to the d1 leaves in T .

Next, we prove d2 − 8d1 ≤ d1, which indicates d1 ≥ 1
9d2 and together with Lemma E.1 indicates d1 = Θ(d). Prove by

contradiction. Suppose d2− 8d1 > d1. Then at least one leaf in T , say V , is connected to two pipe vertices in T , say U1, U2.
Then, add the edges V ∗−∗ U1, V ∗−∗ U2 to T and delete one of the incident edges of U1, U2 each, we lose one leaf vertex
V in T , however, obtain two more (one of U1’s neighbors and one of U2’s neighbors), which contradict with T being a
maximum leaf spanning tree.

Lemma E.10. For a connected causal graph G, if d>2 = ω(log(d)), then NG = NP(d).

Proof. We prove the lemma by showing that any G with d>2 = ω(log(d)) has a maximum leaf spanning tree with ω(d>2)
leaves. In the regard, by Lemma E.8, the maximum leaf spanning tree has at least ω(2log(d)) = NP(d) equivalence
classes. Then, we can delete the edges in G until G becomes its maximum leaf spanning tree and use Lemma E.6 to show
NG = NP(d).

We first construct a lower bound graphG ofG such thatNG ≤ NG, by keeping all vertices of deg= 1, deg> 2, and removing
all the chunk vertices which have deg= 2. Specifically, use Lemma E.7 and iteratively melt the chunk vertex Xi, whose two
neighbors denoted as Ai, Bi, with the following rules: i) If deg(Ai) = 1, or deg(Bi) = 1, or deg(Ai) = deg(Bi) = 2, or
deg(Ai) = deg(Bi) = 3, put Xi into L if it is a non-collider, C if otherwise. ii) Otherwise, one of deg(Ai),deg(Bi) is 2,
the other one is 3. Without loss of generality, suppose deg(Ai) = 2,deg(Bi) = 3. If Ai is adjacent to Bi and Ai, Xi, Bi
form a cycle, then delete the edge Ai ∗−∗ Xi. Otherwise, melt the vertex Xi (put it into L if it is a non-collider, C if
otherwise).

Next, we show that the G is a connected graph with at least d>2 vertices, such that every vertex in G is either of deg= 1 or a
non-chain vertex. This is because all vertices of deg= 1 in G are still of deg= 1 in G, all non-chain vertices in G are still of
deg≥ 3 in G.

Hence, G has a maximum leaf spanning tree T with at least Θ(d>2) leaves, according to Lemma E.9. By Claim E.8, we
haveNT = ω(cd>2) for some 1 < c < 2. By Lemma E.7, we haveNG > NG > NT , which together with d>2 = ω(log(d))
and Lemma E.3 indicates NG = NP(d).

Lemma E.11. Consider two vertex sets Vi,Vj , and a path p between two vertices V1, Vl. If p can be blocked by Vi, but
can not be blocked by Vi ∪Vj , then, we have V1 6⊥⊥G Vj |Vi.

Proof. To prove the lemma, we construct a path p1 between V1 and a vertex in Vj such that p1 can not be blocked by Vi.

We first prove the following properties i)-iv):

i) p must contain a collider. Prove by contradiction. Suppose all vertices on p are non-colliders. Then, since Vi can block
p, we have Vj contains at least one non-collider on p. Hence, the union set Vi ∪Vj also contains a non-collider on p.
Therefore, p can be blocked by Vi ∪Vj , which is a contradiction.

ii) In a similar way, we can prove that Vi and Vi ∪Vj do not contain any non-collider on p.

iii) Since p can be blocked by Vi and ii), we have: ∃ a collider on p such that the collider and its descendants are all in Vi.

iv) For any collider Vc on p, if Vc and any vertex in De(Vc) are all not in Vi, then, either Vc or a vertex in De(Vc) is in Vj .
This is because if otherwise, Vi and all vertices in De(Vi) are not in Vi ∪Vj . Therefore, the path p can be blocked by
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Vi ∪Vj , which is a contradiction.

We then construct the path p1 in the following way:

Denote those colliders on p such that themselves and their descendants are all not in Vi as (in the order of their distance to
V1) as {Vc1 , Vc2 , ..., Vcl}.

Now, consider the subpath p′ of p with p′ :=< V1, V2, ..., Vc1−1, Vc1 >. We have the following analyses: i) By the definition
of Vc1 , among V1, V2, ..., Vc1−1, all colliders and their descendants are in Vi. ii) Among V1, V2, ..., Vc1−1, all non-colliders
are not in Vi. iii) Either Vc1 or a vertex in De(Vc1) is in Vj .

If it is Vc1 ∈ Vj , then we have the path p1 =< V1, V2, ..., Vc1 > between V1 and a vertex in Vj satisfying that p1
can not be blocked by Vi, because of i) and ii); If it is a vertex in De(Vj) that is in Vj , then, we have the path
p1 =< V1, V2, ..., Vc1 → · · · → Vj) for Vj ∈ De(Vc1 >, between V1 and a vertex in Vj satisfying that p1 can not be
blocked by Vi, because of i), ii), and the definition of Vc1 .

Lemma E.12 (Merging property). For any causal graph G where Y is adjacent to a vertex X0, and vertices in V\{Y,X0}
are adjacent to at most one vertex in {Y,X0}, merge7 Y,X0 into a new vertex Ỹ and denote the resulted graph as G̃. Then,
we have NG̃ + 1 ≤ N ≤ 2NG̃.

Proof. During the proof, we omit the subscript and denote NG as N , NG̃ as Ñ , XSi
as Xi for brevity.

Proof of the right side. We show for any T ⊆ {X0},Xi,Xj ⊆ V\{Y,X0}, if Xi ∼G̃ Xj , then Xi ∪T ∼G Xj ∪T. In
this regard, for any subset T, there are at most Ñ equivalent classes in G, thus N ≤ 2|T|Ñ = 2Ñ .

1. By Xi ∼G̃ Xj , we have ∃Xij ⊆ Xi∩Xj such that Ỹ ⊥⊥G̃ X(ij)c |Xij . In other word, we have {Y,X0} ⊥⊥G X(ij)c |Xij .

2. When T = ∅, by 1., we have Y ⊥⊥G X(ij)c |Xij and thus Xi ∼G Xj holds.

3. When T = {X0}, by 1., we have: i) any path in G between X(ij)c and Y can be blocked by Xij , and ii) any path in G
between X(ij)c and T can be blocked Xij . Next, we show any path in G between X(ij)c and Y can also be blocked by
Xij ∪T, which indicates Xi ∪T ∼G Xj ∪T.

Prove by contradiction. Suppose there is a path between X(ij)c and Y that can be blocked by Xij and can not be blocked by
Xij ∪T. By Lemma. E.11, we can construct a path between X(ij)c and T such that it can not be blocked by Xij , which
contradicts with 3. ii).

Proof of the left side. We first prove the in-equation under the case when X0 is a complete collider8. With {X0} as the
selection set, the induced MAG is G̃, since there is at least one equivalent class when not conditioning on X0, we have
Ñ + 1 ≤ N by Alg. 2 and Lemma E.7.

For the cases when X0 is a complete non-collider, or X0 is a partial collider and ∃Xi ∈ De(X0) such that Xi is incident to
a tail-tail9 edge, we can prove Ñ + 1 ≤ N in a similar way.

Next, we discuss the case where X0 is a partial collider and ∀Xi ∈ De(X0), Xi is not incident to a tail-tail edge. We first
show the following properties 1. and 2..

1. In G, for two vertex sets Xi,Xj , if X0 ∈ Xi and X0 6∈ Xj , then Xi 6∼G Xj . This is because Y is adjacent to X0 in G.

Further, we show for two vertex sets Xi,Xj , if Xi ∩ De(X0) 6= ∅ and Xj ∩ De(X0) = ∅, then Xi 6∼G Xj . This is
proved as follows. For Xi ∈ Xi ∩ De(X0), there is a path p :=< Y ∗ → X0 → · · · → Xi > from Y to Xi. Since
Xj ∩De(X0) = ∅, ∀Xij ⊆ Xi ∩Xj , we have Xij ∩De(X0) = ∅ and Xi ∈ X(ij)c . As a result, ∀Xij ⊆ Xi ∩Xj , there
is a path p between Y and X(ij)c such that p can not be blocked by Xij , i.e., Xi 6∼G Xj .

In G̃, similarly, for two vertex sets Xi,Xj , if Xi ∩De(X0) 6= ∅ and Vj ∩De(X0) = ∅, then Xi 6∼G̃ Xj .

7The merging operation means contradicting the edge (Y,X0) and merging Y,X0 into a new vertex Ỹ . Edges incident to Ỹ in G̃ are
edges incident to either Y or X0 in G, their orientations on the Ỹ side can be randomly assigned, and do not influence NG̃, while
orientations on the other side keep the same as in G.

8X0 is called a complete (non-)collider if it is a (non-)collider on any path p :=< Xi, X0, Y > with Xi ∈ NeigG(X0)\{Y0}.
9A tail-tail edge is an edge ∗−∗ with orientations at both sides being tails, i.e., −. According to the definition of a tail-tail edge (Zhang,
2008), a vertex is incident to a tail-tail edge means it is an ancestor of a member of the selection set.
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2. In G, by 1., divide subsets of X into those that contain X0 and those that do not contain X0. Denote the number of
equivalent classes in them as N1, N2, respectively, we have N = N1 +N2. Further, divide those subsets that do not contain
X0 into those that have an intersection with De(X0) and those that have no intersection with De(X0). Denote the number
of equivalent classes in them as N3, N4, respectively. We have N2 = N3 +N4 and thus N = N1 +N3 +N4.

Similarly, in G̃, divide subsets of X\{X0} into those that have an intersection with De(X0) and those that have no
intersection with De(X0). Denote the number of equivalent classes in them as Ñ1, Ñ2, respectively. We have Ñ = Ñ1+Ñ2.

It is straightforward to have N4 ≥ 1. In the following, we will show N1 ≥ Ñ2, N3 = Ñ1 and thus N ≥ Ñ + 1.

Claim. 1. For two subsets of vertex Xi,Xj such that Xi ∩ (X0 ∪De(X0)) = ∅ and Xj ∩ (X0 ∪De(X0)) = ∅, then
Xi ∼G̃ Xj ⇔ Xi ∪X0 ∼G Xj ∪X0, which indicates N1 ≥ Ñ2.

Proof of Claim. 1. ⇒ can be proved similarly as the proof of the right side.

⇐ Suppose Xi ∪ X0 ∼G Xj ∪ X0, we will show Xi ∼G̃ Xj , given the fact that Xi,Xj do not contain X0 nor its
descendants, and any member of {X0} ∪De(X0) is not incident to a tail-tail edge.

1. For Xi ∈ De(X0) and Xj 6∈ De(X0), since Xi −Xj and Xi → Xj is not allowed, it must be Xi ←∗Xj . Similarly, we
have X0 → Xi and X0 ←∗Xj .

2. By Xi∪X0 ∼G Xj∪X0, we have ∃Xij ⊆ (Xi∪X0)∩(Xj∪X0) such that Y ⊥⊥G (Xi∪Xj∪X0)\Xij |Xij . Since Y
is adjacent to X0, Xij must contain X0. That is, ∃Xij ⊆ Xi∩Xj such that Y ⊥⊥G (Xi∪Xj ∪X0)\(Xij ∪X0)|Xij ∪X0,
which is equivalent to Y ⊥⊥G X(ij)c |Xij ∪X0.

3. We first show Y ⊥⊥G X(ij)c |Xij , which is equivalent to showing any path between Y and X(ij)c can be blocked by Xij .
Prove by contradiction. Suppose there is a path p0 :=< Xk1 , Xk2 , ..., Y > between Y and X(ij)c that can be blocked by
Xij ∪X0, and can not be blocked by Xij . By Lemma. D.1, the set {X0} contains a non-collider on p0, which means X0 is
a non-collider on p0.

Then, X0 is incident to at least one tail on p0, since X0 ← ∗Xj for Xj 6∈ De(X0), p0 must contain a member of
De(X0) and p0 =< Xk1 , Xk2 , ..., X0 → Xi, ..., Y > for Xi ∈ De(X0). Since Y is not a member of De(X0), there is
X0 → · · · → Xi ←∗Xj for Xi ∈ De(X0) and Xj 6∈ De(X0) on p0. As a result, p0 contains a collider that itself nor its
descendants are in Xij . This means p0 can be blocked by Xij and thus a contradiction.

4. We then show X0 ⊥⊥G X(ij)c |Xij , which together with 3. means {Y,X0} ⊥⊥G X(ij)c |Xij and thus Xi ∼G̃ Xj . We
show this by proving any path between X(ij)c and X0 can be blocked by Xij . Prove by contradiction. Suppose there is a
path p1 :=< Xk1 , Xk2 , ..., Xkl , X0 > that can not be blocked by Xij .

Then, if Xkl 6∈ De(X0), we have a path p2 :=< Xk1 , ..., Xkl∗ → X0 ← ∗Y > such that p2 can not be blocked by
Xij ∪ X0, which contradicts with Y ⊥⊥G X(ij)c |Xij ∪ X0. Otherwise Xkl ∈ De(X0), then we have a path p2 :=<
Xk1 , ..., Xkl ← X0 ← ∗Y >. Since Xk1 ∈ X(ij)c and thus Xk1 6∈ De(X0), there is Xj → Xi ← · · · ← X0, with
Xj 6∈ De(X0), Xi ∈ De(X0), between Xk1 and X0. Hence, we have Xi is a collider on p1, itself nor its descendants are
in Xij , which means p1 can be blocked by Xij and thus a contradiction.

To conclude, 3. and 4. mean⇐ is true.

Claim. 2. Two subsets of vertices Xi,Xj such that Xi,Xj do not contain X0, Xi ∩De(X0) 6= ∅, and Xj ∩De(X0) 6= ∅,
then, Xi ∼G̃ Xj ⇔ Xi ∼G Xj , which indicates N3 = Ñ1.

Proof of Claim. 2. ⇒ can be proved similarly as the proof of the right side.

⇐ 1. By Xi ∼G Xj , we have ∃Xij ⊆ Xi ∩Xj such that Y ⊥⊥G X(ij)c |Xij .

We show that Xij must contain a member of De(X0). Prove by contradiction. Suppose Xij ∩De(X0) = ∅, which means
Xij does not containX0 nor its descendants. Since Xi∩De(X0) 6= ∅ and Xj∩De(X0) 6= ∅, (Xi∪Xj)\(Xij∩De(X0)) 6=
∅. As a result, there is a path p0 :=< Y ∗→ X0 → · · · → Xi >, for Xi ∈ De(X0), between Y and X(ij)c that can not be
blocked by Xij , which contradicts with Y ⊥⊥G X(ij)c |Xij . As a result, Xij must contain a member of De(X0).

2. Next, we show X0 ⊥⊥G X(ij)c |Xij , which together with 1. indicates {Y,X0} ⊥⊥G X(ij)c |Xij and thus Xi ∼G̃ Xj . We
prove this by showing any path between X(ij)c and X0 can be blocked by Xij .

Prove by contradiction. Suppose there is a path p1 :=< Xk1 , Xk2 , ..., Xkl , X0 > that can not be blocked Xij . Consider the
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path p2 :=< Xk1 , Xk2 , ..., Xkl , X0 ←∗Y > constructed from p1. If X0 is a non-collider, since Xij does not contain X0,
p2 can not be blocked by Xij . Otherwise X0 is a collider, since Xij contains a member of De(X0), p2 can not be blocked
by Xij neither. These results contradict with Y ⊥⊥G X(ij)c |Xij . Hence, we have X0 ⊥⊥G X(ij)c |Xij .

To conclude, 1. and 2. mean⇐ is true. Claim.1 indicatesN1 ≥ Ñ2, Claim.2 indicatesN3 = Ñ1, and thusN ≥ Ñ+1.

Corollary E.13 (Merging property for multiple vertices). For any causal graph G where Y is adjacent to a connected
vertex sets X0, and vertices in V\(X0 ∪ Y ) is adjacent to at most one vertex in X0 ∪ Y . Merge Y,X0 into a new vertex Ỹ
and call the resulted graph G̃. Then, Ñ + |X0| ≤ N ≤ 2|X0|Ñ .

Proof. Proof of the right side is the same as Lemma. E.12.

Proof of the left side. Since X0 is a connected set and Y is adjacent to X0, we can delete edges among X0 ∪ Y until the
subgraph over X0 ∪ Y becomes a spanning tree over X0 ∪ Y with Y as the root vertex. Then, iteratively merge vertices and
use Lemma. E.12, Lemma E.6, we have N ≥ Ñ + |X0|.

E.3. Details of Prop. 5.5: Complexity

In this section, we discuss the complexity of searching NG equivalence classes. We show that compared to the exponential
cost O(2dS ) of exhaustive search, our search strategy enjoys a polynomial cost P(dS) when GS is mainly composited of
chain vertices. Our analysis mainly uses the results in Lemma E.10 and Lemma E.12. The idea is briefed as follows:

Lemma E.10 shows that any GS with d>2 = ω(log(d)) has NG = NP(dS). Hence, we need to look at cases when
d>2 = O(log(d)). For these cases, Lemma E.12 shows that the non-chain vertices in GS do not influence the rank
of NG. This is because we can iteratively merge the non-chain vertices into Y and have NG being squeezed within
NG̃ ∼ 2d>2NG̃. Since 2d>2 = P(dS), we have NG = P(dS) if and only if NG̃ = P(dS). Therefore, the rank of NG when
d>2 = O(log(dS)) is decided by NG̃, in other words, by the chain vertices with deg≤ 2 in GS .

Intuitively, when the chain vertices compose different chains that do not intersect each other, by Claim E.4, the NG̃ is the
product of the chains’ lengths. Hence, the more “intensive” the chain vertices distribute, the smaller NG̃ and thus NG will
be. In the following, we will provide a formal metric FG to measure the intensity of chain vertices.

We first define the following structures on GS . For brevity, we omit the subscript and denote GS as G, dS as d, respectively.

1. A path is a sequence of distinct vertices < V1, V2, ..., Vl > where Vi, Vi+1(i = 1, 2, ..., l − 1) are adjacent in G. The
length of the path is l. Define the distance between a vertex and Y and the length of the shortest path between them.

2. A chain is a path where every vertex on it has deg ≤ 2 in G. The head of a chain is the vertex in it that is closest to Y .
A maximal chain is a chain that can not be made longer by adding new vertices.

3. For a maximal chain c, let c ∈ Ch′(Y ) if there is no other maximal chain in the shortest path between the head of c
and Y . For two maximal chains c1, c2, let c2 ∈ De′(c1) if there is a path between a vertex in c2 and Y that contains c1.

4. For a maximal chain c ∈ Ch′(Y ), define a set of operations optc(G) on G. Specifically, if De′(c) = ∅, define
optc(G) := {remove c}; Otherwise, define optc(G) := {removeX1:i

c |i = 1, 2, ..., l} ∪ {replace cwith an edge}, with
l the number of vertices on c, Xi

c the i-th one (in the order of the distance to Y ), and X1:i
c := {X1

c , X
2
c , ..., X

i
c}.

5. For a maximal chain with l vertices, define cost(c) := l + 1 if c has one head vertex, (l2 + l + 2)/2 if c has two head
vertices (that is both sides of c have equal distance to Y ).

Proposition 5.5 (Complexity). Let FG be an recursive metric defined over maximal chains in G:

FG :=
∏

c∈Ch′G(Y )

De′(c)=∅

cost(c)
∑

opt∈
∏

c∈Ch′
G

(Y ) optc

Fopt(G).

Then, NG = P(d) if and only if d>2 = O(log(d)) and FG = P(d).
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Proof. To prove the proposition, we will show i) if d>2 = ω(log(d)), then NG = NP(d); ii) if d>2 = O(log(d)), then
NG = P(d)⇔ FG = P(d).

Specifically, ii) means if d>2 = O(log(d)) and FG = P(d), then NG = P(d), which shows⇐ of the proposition. i) means
if NG = P(d), then d>2 = O(log(d)), together with ii), it means if NG = P(d), then d>2 = O(log(d)) and FG = P(d),
which shows⇒ of the proposition.

The proof of i) is at Lemma. E.10. The proof of ii) is as follows:

Claim. 1. FG ≤ NG ≤ 2d>2FG.

Proof of Claim. 1. Modify Alg. 2 in the following way:

i) Add before line-2: if Neig(Y ) contains non-chain vertices, then merge them into Y until Neig(Y ) only contains
non-chain vertices. Call the resulting graph as G̃. ii) Replace the G with G̃, G′ with G̃′, and NG with NG̃, in lines 4-12.
Call the modified algorithm as NG̃ = count′(G).

Next, we first show FG = NG̃, then prove Claim. 1 via the count′(G) algorithm.

After merging non-chain vertices around Y , in G̃, Y ’s neighbors are the head vertices of the maximal chains in Ch′(Y ).
Recursively conduct the count′ algorithm on G̃ and its induced MAGs M̃G, until all vertices in all maximal chains in
Ch′(Y ) have been traversed.

For maximal chains without descendants, since they are disjoint with the other maximal chains, we have NG̃ =
(
∏
c∈Ch′

G̃
(Y ),De′

G̃
(c)=∅ cost(c))Nopt1(G̃), where cost(c) = l+ 1 if c has one head vertex (see Claim E.4) and (l2 + l+ 2)/2

if c has two head vertices (see Claim E.5), and opt1 :=
∏
c∈Ch′

G̃
(Y ),De′

G̃
(c)=∅ cost(c)optc, and opt1(G̃) is the causal graph

after removing all maximal chains without descendants.

In opt1(G̃), denote the remained maximal chains in Ch′(Y ) as {ci}i=1:r and the vertices on them as {Xi
1, ..., X

i
li
}i=1:r.

To obtain Nopt1(G̃), for each ci, similarly as the analysis of the Claim E.4, we need to consider the following li + 1

situations: Xi
1 is blocked10; Xi

1 is open, Xi
2 is blocked; ...; Xi

1, ..., X
i
li−1 are blocked, Xi

li
is open; and Xi

1, ..., X
i
ti are

open. Because vertices in the r maximal chains are disjoint, we in total need to consider
∏r
i=1 li + 1 situations, and

Nopt1(G̃) =
∑∏r

i=1 li+1
j=1 Nopt1(G̃)′j

, where opt1(G̃)′j denotes the induced subgraph from opt1(G̃) in the j-th situation.

Note that each subgraph opt1(G̃)′j corresponds to an operation in
∏
c∈Ch′

G̃
(Y ) optc on G̃, we have Nopt1(G̃) =∑

opt∈
∏

c∈Ch′
G̃

(Y ) optc
Nopt(G̃). Hence, NG̃ =

∏
c∈Ch′

G̃
(Y ),De′

G̃
(c)=∅ cost(c)

∑
opt∈

∏
c∈Ch′

G̃
(Y ) optc

Nopt(G̃) and NG̃ =

FG.

During the recursive execution of the count′(G) to obtain NG̃, there are at most d>2 non-chain vertices merged into Y . As
a result, by Lemma. E.12, we have NG ≤ 2d>2NG̃. The number of non-chain vertices merged into Y is at least 0, so we
also have NG̃ ≤ NG.

To conclude, we have FG ≤ NG ≤ 2d>2FG, which means Claim. 1. and hence the proposition is true.

Remark E.14. If the skeleton of G is a tree, for two maximal chains c1, c2, define c2 ∈ Ch′(c1) if c1 contains the first
non-chain vertex in the path from the head of c2 to Y . The FG degenerates to:

FG =
∏

c̃∈Ch′(Y )

f(c̃),

with f(c) := cost(c) +
∏
c̃∈Ch′(c) f(c̃), cost(c) = len(c) + 1(Ch′(c) = ∅).

10A vertex of deg=2 is blocked if it is a non-collider and is put in the selection set, or it is a collider and is put in the latent set. A vertex is
open if it is not blocked

35



Which Invariance Should We Transfer? A Causal Minimax Learning Approach

F. Experiment
F.1. Implementation details

All codes are implemented with PyTorch 1.10 and run on an Intel Xeon E5-2699A v4@2.40GHz CPU.

Baselines.

1. Vanilla. E[Y |x] is implemented by the same neural network as fS′ .

2. ICP (https://github.com/juangamella/icp). The level of the test procedure is set to 0.05. The estimator
is implemented by the same neural network as fS′ .

3. IC (https://github.com/mrojascarulla/causal_transfer_learning). The level of the test pro-
cedure is set to 0.05. Levene test is used. The estimator is implemented by the same neural network as fS′ .

4. DRO (https://github.com/duchi-lab/certifiable-distributional-robustness). The γ is
set to 2. The estimator is implemented by the same neural network as fS′ .

5. Surgery estimator. Since there is no official implementation available, we implement it based on our method. Specifi-
cally, we pick 2 ∼ 3 validation environments from Etr and use the validation loss to select S∗.

6. IRM (https://github.com/facebookresearch/InvariantRiskMinimization). The best φ is cho-
sen by comparing the validation loss of reg = 0, 10−5, 10−4, 10−3, 10−2, 10−1.

7. HRM (https://github.com/LhSthu/HRM). The cluster number is set to the number of deployment environ-
ments. σ and λ are both set to 0.1. The overall threshold for subset selection is set to 0.25.

8. IB-IRM (https://github.com/ahujak/IB-IRM). The λib is set to 0.1, the λirm is set to 0.75. The estimator
is implemented by the same neural network as fS′ .

9. Anchor regression (https://github.com/rothenhaeusler/anchor-regression). The γ is set to 1.5.

Synthetic study. The neural networks to implement fS′ and hθ are two-layers MLPs. We use a sigmoid activation function
in the hidden layer to add non-linearity. We use the Adam optimizer. The learning rate is set to 0.02, and epochs are set to
10000 with an early stop.

Alzheimer’s disease diagnosis. The neural networks to implement fS′ and hθ are the same as the synthetic study. We use
the SGD optimizer. For the estimation of fS′ , the epochs are set to 5000, the learning rate is set to 0.25 in the first 4000
epochs, and decreased to 0.1 in the last 1000 epochs. For the estimation of L, the epochs are set to 12000 with an early stop,
the learning rate is set to 0.4.

Gene function prediction. The neural networks to implement fS′ and hθ are the same as the synthetic study. We use the
SGD optimizer. The epochs are set to 10000. For the estimation of fS′ , the learning rate is set to 0.01. For the estimation of
L, the learning rate is set to 0.05.
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(a) (b) (c) (d)

Figure 8: The synthetic causal graphs for complexity analysis. Stable and mutable variables are respectively marked blue and red. We
have d>2 = 1, 2, 5, 6 in (a), (b), (c), (d), respectively. The sparse graphs (a), (b) are generated by deleting edges from Fig. 4 (a). The
dense graphs (c), (d) are generated by adding edges to Fig. 4 (a).

Table 4: Indices for brain region partition.

Abbreviation Brain region AAL index (Tzourio-Mazoyer et al., 2002)

FSL Frontal superior lobe 2101,2102,2111,2112,2601,2602
FML Frontal middle lobe 2201,2202,2211,2212,2611,2612
FIL Frontal inferior lobe 2301,2302,2311,2312,2321,2322
TSL Temporal superior lobe 8111,8112
TML Temporal medial lobe 8201,8202
TIL Temporal inferior lobe 8301,8302
TP Temporal pole 8121,8122,8211,8212
PSL Parietal superior lobe 6101,6102
PIL Parietal inferior lobe 6201,6202
OSL Occipital superior lobe 5101,5102
OML Occipital middle lobe 5201,5202
OIL Occipital inferior lobe 5301,5302
CA Cingulum anterior 4001,4002
CM Cingulum middle 4011,4012
CP Cingulum posterior 4021,4022
INS Insula 3001,3002
AMY Amygdala 4201,4202
CAU Caudate 7001,7002
HP Hippocampus 4101,4102
PAL Pallidum 7021,7022
PUT Putamen 7011,7012
THA Thalamus 7101,7102
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F.2. Extra results

Table 5: Max. MSE evaluation on synthetic and IMPC datasets. The first column notes the methods we compare. The second column
represents the max. MSE over deployment environments. Data for Syn-a,b,c,d are respectively generated by the causal graphs (a) ,(b), (c),
and (d) shown in Fig. 8. The best results are boldfaced.

Method max. MSE (↓)
Syn-a Syn-b Syn-c Syn-d IMPC

Vanilla 15.946±2.7 3.033±2.7 5.613±3.5 1.814±0.4 1.227±0.1
ICP (Peters et al., 2016) 1.777±0.6 1.629±0.6 1.631±0.6 1.097±0.1 1.291±0.3

IC (Rojas-Carulla et al., 2018) 5.580±0.3 1.631±0.4 2.322±0.7 1.665±0.3 1.253±0.2
DRO (Sinha et al., 2018) 4.511±1.8 1.628±0.4 2.311±0.7 1.827±0.4 1.196±0.1

Surgery (Subbaswamy et al., 2019) 1.325±0.0 1.086±0.0 1.005±0.1 1.190±0.2 1.071±0.1
IRM (Arjovsky et al., 2019) 6.328±2.3 1.439±0.2 3.067±0.9 1.601±0.5 1.296±0.1

HRM (Liu et al., 2021) 4.511±1.8 1.537±0.4 1.019±0.0 1.427±0.3 1.205±0.1
IB-IRM (Ahuja et al., 2021) 1.194±0.0 1.177±0.0 1.111±0.1 1.108±0.0 1.288±0.1

AncReg (Rothenhäusler et al., 2021) 1.482±0.4 1.032±0.0 1.117±0.7 1.631±0.5 1.127±0.1
Ours (Alg. 1) 1.037±0.0 1.046±0.0 0.689±0.0 1.067±0.0 0.952±0.0

Table 6: Std. MSE evaluation on synthetic and IMPC datasets. The first column notes the methods we compare. The second column
represents the max. MSE over deployment environments. Data for Syn-a,b,c,d are respectively generated by the causal graphs (a) ,(b), (c),
and (d) shown in Fig. 8. The best results are boldfaced.

Method std. MSE (↓)
Syn-a Syn-b Syn-c Syn-d IMPC

Vanilla 3.184±1.2 0.552±0.5 1.543±1.0 0.463±0.3 0.257±0.0
ICP (Peters et al., 2016) 0.132±0.1 0.145±0.0 0.219±0.1 0.055±0.0 0.289±0.1

IC (Rojas-Carulla et al., 2018) 0.421±0.0 0.324±0.2 0.635±0.4 0.376±0.1 0.302±0.1
DRO (Sinha et al., 2018) 0.329±0.1 0.321±0.2 0.633±0.4 0.474±0.3 0.266±0.0

Surgery (Subbaswamy et al., 2019) 0.367±0.0 0.071±0.0 0.147±0.0 0.101±0.1 0.237±0.0
IRM (Arjovsky et al., 2019) 1.560±0.7 0.205±0.1 0.803±0.4 0.369±0.3 0.319±0.1

HRM (Liu et al., 2021) 0.328±0.1 0.280±0.2 0.011±0.0 0.195±0.1 0.278±0.0
IB-IRM (Ahuja et al., 2021) 0.104±0.0 0.063±0.0 0.082±0.0 0.055±0.0 0.259±0.0

AncReg (Rothenhäusler et al., 2021) 0.210±0.1 0.030±0.0 0.285±0.3 0.410±0.3 0.275±0.0
Ours (Alg. 1) 0.034±0.0 0.043±0.0 0.073±0.0 0.062±0.0 0.017±0.0

Table 7: Std. over equivalent subsets on synthetic and IMPC datasets. Data for Syn-a,b,c,d are respectively generated by the causal graphs
(a) ,(b), (c), and (d) shown in Fig. 8.

Metric Dataset
Syn-a Syn-b Syn-c Syn-d IMPC

Inter-class std. 0.118 1.178 0.697 1.668 0.288
Intra-class std. 0.005 0.017 0.001 0.015 0.023
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(a) (b)

Figure 9: Detailed results for Fig. 5. (a) and (b) respectively show the max. MSE of all the 256 subsets for Fig. 5 (a) and (b).

(a) (a.1) (b) (b.1)

(c) (c.1) (d) (d.1)

Figure 10: Results on synthetic data. (a), (b), (c), and (d) respectively show the max. MSE of the first 100 subsets ranked respectively
according to our method and the validation‘s loss, with data generated by the causal graphs in Fig. 8 (a), (b), (c), and (d). Detailed results
of all the 256 subsets are shown in (a.1), (b.1), (c.1), and (d.1), respectively.
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F.2.1. GENE FUNCTION PREDICTION

In this section, we evaluate our method on gene function prediction, which can potentially help better understand the
human-disease progress (Muñoz-Fuentes et al., 2018).

(b) (c)(a)

Figure 11: Gene function prediction. (a) The learned causal graph, where↔ denotes undirected edges. (b) Comparison of max. MSE
over deployed environments. (c) Max. MSE of subsets that are ranked respectively according to the estimated worst-case risk of our
method and the validation’s loss.

Dataset. We consider the International Mouse Phenotyping Consortium (IMPC) dataset11 that was originally published
in a causal inference challenge and later used as a benchmark for domain generalization (Magliacane et al., 2018). The
IMPC contains the hematology phenotypes of both wild-type mice and mutant mice with 13 kinds of single-gene knockout.
To predict the gene function, we knock out this gene and assess the cell counts of monocyte (MON), with cell counts of
neutrophil (NEU), lymphocyte (LYM), eosinophil (EO), basophil (BA), and large unstained cell (LUC) as covariates. We use
the kind of knocked-out gene to divide environments. The training environments contain wild-type mice and five randomly
picked gene knockouts. The deployed environments contain the rest nine kinds of gene knockouts. This random train-test
split is repeated 45 times.

Causal discovery and Pow(S)/∼G recovery. The learned causal graph is shown in Fig. 11 (a). As we can see, we have
LUC→ LYM and LYM→ BA, which respectively echo the existing studies that monocyte can activate the lymphocyte
(Carr et al., 1994) and increase the number of LUC (Lee et al., 2021), and that the lymphocyte participates in activating
basophil (Goetzl et al., 1984). Since MON is mutable and LYM ∈ De(MON) is pointed by LUC, the condition in Thm. 4.1
is violated. We need to compare the equivalence classes to find the optimal subset. Applying Alg. 2, we find that there are
12 equivalence classes out the 24 subsets (dS | = 4 as shown in Fig. 11 (a)).

Results. Fig. 11 (b) and Tab. 5, 6 respectively report the max. MSE and std. MSE of our method and baselines. As we can
see, our method can outperform the others by a significant margin. Besides, Fig. 11 (c) shows that our L can well reflect the
worst-case risk.

Analysis of ∼G equivalence. We compute the intra-class std. versus the inter-class std. The results are shown in Tab. 7
(IMPC), which show that equivalence subsets have comparable max. MSE.

11http://www.crm.umontreal.ca/2016/Genetics16/competition_e.php
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