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A B S T R A C T   

To efficiently process complex visual scenes, the visual system often summarizes statistical information across 
individual items and represents them as an ensemble. However, due to the lack of techniques to disentangle the 
representation of the ensemble from that of the individual items constituting the ensemble, whether there exists a 
specialized neural mechanism for ensemble processing and how ensemble perception is computed in the brain 
remain unknown. To address these issues, we used a frequency-tagging EEG approach to track brain responses to 
periodically updated ensemble sizes. Neural responses tracking the ensemble size were detected in parieto- 
occipital electrodes, revealing a global and specialized neural mechanism of ensemble size perception. We 
then used the temporal response function to isolate neural responses to the individual sizes and their interactions. 
Notably, while the individual sizes and their local and global interactions were encoded in the EEG signals, only 
the global interaction contributed directly to the ensemble size perception. Finally, distributed attention to the 
global stimulus pattern enhanced the neural signature of the ensemble size, mainly by modulating the neural 
representation of the global interaction between all individual sizes. These findings advocate a specialized, global 
neural mechanism of ensemble size perception and suggest that global interaction between individual items 
contributes to ensemble perception.   

1. Introduction 

The visual system has limited processing capacity (Luck and Vogel, 
1997; Palmer et al., 2011). One strategy to overcome the capacity lim-
itation and optimize information processing is to summarize the com-
plex and redundant information into ensemble coding (Alvarez, 2011; 
Parkes et al., 2001; Whitney and Yamanashi Leib, 2018). Our visual 
system is remarkably accurate in estimating ensemble properties (e.g., 
mean, variance) in multiple dimensions, including low-level visual 
features such as size (Ariely, 2001; Chong and Treisman, 2003) and 
orientation (Parkes et al., 2001), and high-level visual characteristics 
such as emotion, gender (Haberman and Whitney, 2007), face identities 
(Neumann et al., 2013), and biological motion (Sweeny et al., 2013). 

However, because individual items constitute the ensemble, it is difficult 
for traditional neuroimaging methods to dissociate the neural process of 
ensemble perception from that of individual item perception. As a result, 
although ensemble perception has been studied extensively at the 
behavioral level over the past two decades, how it is implemented in the 
brain remains controversial. 

Two hypotheses have been proposed to explain how ensemble 
perception is achieved in the brain. The subsampling hypothesis (Myc-
zek and Simons, 2008; Simons and Myczek, 2008; Solomon et al., 2011) 
proposes that ensemble perception does not recruit a global mechanism; 
instead, it can be achieved by sampling and summarizing a subset of 
items. Specifically, a small subset of items are randomly sampled by 
attention, and their properties are averaged to generate a mean 
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perception. Consequently, not all items in the stimulus set are processed 
in ensemble perception. The summary-statistic representation hypoth-
esis (Ariely, 2001, 2008; Chong et al., 2008; Chong and Treisman, 
2005a, 2005b), on the other hand, suggests a specialized global mech-
anism that computes summary-statistic representations over all dis-
played items. According to this hypothesis, the ensemble property of a 
stimulus set is processed in parallel with its individual items. All items 
are processed in the ensemble perception (Iakovlev and Utochkin, 
2021), although their weights may vary (Choi and Chong, 2020). This 
claim is supported by EEG evidence that ensemble statistics can be 
available even before individual item properties (Epstein and Emma-
nouil, 2021). Despite that, no consensus has been reached thus far on 
whether ensemble perception recruits a global mechanism that pro-
cesses all items in the display. 

In addition to the controversy about the existence of a global 
mechanism, the computational process of summarization remains un-
known. Taking ensemble size perception as an example, it is intuitively 
reasonable for the brain to initially respond to individual sizes and then 
take a linear average of neural responses to individual sizes to represent 
the ensemble size (Allik et al., 2013, 2014; Baek and Chong, 2020a). 
However, ensemble representation computation can be complicated 
because it is modulated by multiple factors, such as selective attention 
(Baek and Chong, 2020b; Choi and Chong, 2020), saliency of individual 
items (Iakovlev and Utochkin, 2021), and variance across items (Semi-
zer and Boduroglu, 2021). Accordingly, weighted averaging and 
weighted variance computation models have been proposed for 
ensemble computation (Choi and Chong, 2020; de Gardelle and Sum-
merfield, 2011; Jeong and Chong, 2021). Furthermore, in addition to 

the linear relationship between perception of individuals and ensemble, 
individuals may interact with each other and contribute to ensemble 
perception interdependently. Given extensive evidence in multisensory 
integration and Gestalt psychology (Angelaki et al., 2009; Wagemans 
et al., 2012), the brain often processes interactions between items. 
Therefore, interactions between individuals, especially between neigh-
boring individuals and between all individuals, may be represented in 
the brain and contribute to ensemble perception. 

To explore the neural signature and computational principle of 
ensemble perception, it is critical to separate the neural responses to 
individual items from that to the ensemble. To achieve this purpose, we 
combined the steady-state visual evoked potential (SSVEP) method with 
the temporal response function (TRF) method. SSVEP utilizes the fact 
that EEG activity tracks the rhythms of changes in visual stimulus, 
allowing neural representations to be “tagged” to visual features at a 
specific frequency. With SSVEP, a stimulus presented at a fixed fre-
quency produces robust neural responses at the same frequency (Norcia 
et al., 2015). In our study, we manipulated the size of eight circles 
presented at fixed locations in the peripheral visual field such that the 
mean size of all circles varied periodically with a base frequency, while 
the sizes of individual circles varied randomly (Fig. 1b and c). Partici-
pants performed mean size-related or unrelated tasks (Fig. 1a). Under 
this manipulation, if the visual system is sensitive to the periodic change 
in the mean size of all displayed items, SSVEP at this base frequency 
should be observed (Ding et al., 2016; Norcia et al., 2015). In contrast, if 
the visual system processes only a small subset of items in the stimulus 
array, as suggested by the subsampling hypothesis, SSVEP at the base 
frequency would not be observed. TRF uses a linear forward modeling 

Fig. 1. Illustration of the stimulus display 
and examples of ensemble and individual 
circle size variations in Experiment 1. a. 
Illustration of the stimulus display. An array 
of circles was presented against a gray 
background at eight fixed locations. b. 
Illustration of the stimulus generation. The 
individual sizes varied randomly across time 
and were determined independently on the 
premise that their mean size changes peri-
odically across time. c. The example varia-
tions of the ensemble size (top two rows) and 
individual circle size (bottom two rows) 
across time. The ensemble size varied peri-
odically at 8 Hz, with an oddball appeared at 
1 Hz in half of the trials. The sizes of indi-
vidual circles varied randomly and inde-
pendently in both oddball-absent and 
oddball-present trials. d. Fourier spectrums 
of the corresponding time series in c. The 
spectrums showed a clear 8 Hz response in 
all trials, and a clear 1 Hz response and its 
higher harmonics only in the oddball- 
present trials. The size variation of individ-
ual circles did not show any clear periodic 
component.   
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approach to extract EEG responses specific to certain sensory stimulus 
inputs from the overall EEG recordings (Ding and Simon, 2012; Lalor 
et al., 2006). Here, to explore the neural representations and contribu-
tions of individual sizes and their interactions, we defined three com-
ponents: individual sizes, their local interactions, and their global 
interaction. Operationally, the local interactions were defined as the 
products of two neighboring individual sizes and the global interaction 
between all individuals was defined as the product over eight individual 
sizes (Kim et al., 2015; Werner and Noppeney, 2010). If the individual 
items interact with each other in the brain, the local and/or global 
interaction components should be represented in the brain and 
contribute to the ensemble perception. 

Previous studies have demonstrated that ensemble representation is 
enhanced when attention is distributed over the global pattern as 
opposed to when attention is focused on a single item (Baek and Chong, 
2020a; Chong and Treisman, 2005b; de Fockert and Marchant, 2008). It 
is unclear which components, individuals or their local or global in-
teractions, are modulated by attentional distribution. Modulating the 
attentional distribution provides a chance to explore which components 
are critical to ensemble perception. Therefore, Experiment 2 further 
investigated modulation of spatial attention distribution on ensemble 
perception. Taken together, the present study aims to address a series of 
questions regarding the neural mechanism of ensemble perception, 
including (1) the neural signature of ensemble size perception, (2) 
whether the individual sizes and their local and global interactions are 
represented in the brain and contribute to ensemble size perception, and 
(3) whether the representations of individual sizes and their interactions 
are modulated by attentional distribution. 

2. Materials and methods 

2.1. Participants 

A total of 45 human volunteers (23 female, age range: 18–24 years) 
participated in this study. Experiment 1 (n = 23) and Experiment 2 (n =
22) were performed at Peking University and Hangzhou Normal Uni-
versity, respectively. Our sample sizes were comparable to those in 
recent studies using similar TRF methods (Broderick et al., 2019; Jia 
et al., 2017; O’Sullivan et al., 2019), which were typically from 16 to 20. 
We decided to recruit 23 and 22 participants for the two experiments 
because our data analysis would estimate 17 independent neural re-
sponses (see below) from the overall EEG signals. All participants were 
right-handed, reported normal or corrected-to-normal vision, and had 
no known neurological or visual disorders. They gave written, informed 
consent in accordance with the procedures and protocols approved by 
the Human Subject Review Committee of Peking University or Hang-
zhou Normal University. 

2.2. Experiment 1 

Apparatus. We used MATLAB (version 9.5, The MathWorks) and 
Psychotoolbox-3 extensions (Brainard, 1997; Pelli, 1997) to generate 
and display visual stimuli and record behavioral responses. The visual 
stimuli were presented on a Display++ LCD monitor (Cambridge 
Research Systems) with a 1920 × 1080 spatial resolution and a 120 Hz 
refresh rate. Electroencephalography (EEG) recording was carried out in 
a dark room shielded from sound and electromagnetic signals. The 
participants were comfortably seated at 57 cm from the screen with their 
heads stabilized on a chin rest. 

Stimuli. An array of circles were presented against a gray back-
ground (luminance: 54 cd/m2) at eight fixed locations (Fig. 1a). The 
eccentricity of the center of each circle was 9◦ and the distance between 
adjacent circle centers was 6.9◦. As depicted in Fig. 1, the edge of each 
circle consisted of an outer black line (luminance: 0.41 cd/m2) and an 
inner white line (luminance: 107.49 cd/m2), so that the mean luminance 
of each circle was equal to the background luminance. 

A 6-s stimulus sequence consisted of 144 circle arrays, which were 
presented successively. Each circle array was presented for 41.7 ms (5 
frame), so the sequence was updated at 24 Hz. The circle sizes in each 
array were determined independently using the following procedure 
(Fig. 1b). First, the radius of each of the eight circles was drawn from a 
uniform distribution between 0.5◦ and 1◦. At the 3rd update of every 3 
updates, the mean radius of the eight circles was set to 0.9◦, so that the 
mean size changed periodically at 8 Hz (i.e., base frequency; Fig. 1b). In 
an oddball-present sequence, at the last update of every 24 updates, the 
mean radius of the eight circles was set to a larger size of 1.2◦ or 1.4◦, so 
that the oddball array appeared periodically at 1 Hz. Second, to enlarge 
the size differences among the circles in each array, four reference sizes 
were randomly drawn from a uniform distribution between 0.1◦ and 
0.4◦. The radii of four randomly selected circles were increased by the 
reference sizes and the radii of the rest four circles were reduced by the 
reference sizes. This procedure ensured that, while the radius of each 
circle changed randomly, the mean radius of the eight circles changed 
periodically at 8 Hz, and the oddball array appeared periodically at 1 Hz 
(Fig. 1c and d). 

Procedure. Each participant completed two blocks of 60 trials. In a 
trial, a 6-s stimulus sequence was presented, and participants were 
instructed to maintain fixation on a small point at the center of the 
display. The mean radius of the oddball array was 1.2◦ in one block and 
1.4◦ in the other block. Half of the trials in each block were oddball- 
present trials, and the other half were oddball-absent trials. The order 
of oddball-present trials and oddball-absent trials was randomized in 
each block. The order of the two blocks was counterbalanced across 
participants. Participants were asked to judge whether oddball arrays 
were present or not by pressing one of two keys. Then, the next trial 
started after a 1–1.5s interval. Participants were prompted to rest after 
completing every 30 trials. Before the formal experiment, the partici-
pants completed 10 trials to get familiar with the experimental pro-
cedure. It took about 20 min to complete the whole experiment. 

2.3. Experiment 2 

Apparatus. The visual stimuli were presented on a CRT monitor with 
a 1024 × 768 spatial resolution and an 85 Hz refresh rate. EEG re-
cordings were carried out in a dark room shielded from sound noise. The 
participants were comfortably seated 70 cm from the screen with their 
heads stabilized on a chin rest. 

Stimuli. An array of circles were presented at the same fixed loca-
tions on a gray background (luminance: 52 cd/m2) with the same ec-
centricity and circle-to-circle distance as in Experiment 1 (Fig. 1A). 
Similar to Experiment 1, the edge of each circle consists of an outer black 
line (luminance: 0 cd/m2) and an inner white line (luminance: 104 cd/ 
m2), so that the mean luminance of each circle was equal to the back-
ground luminance. 

A 6-s stimulus sequence consisted of 102 circle arrays, which were 
presented successively. Each circle array was presented for 58.5 ms (5 
frame), so the sequence was updated at 17 Hz. At the 3rd update of every 
3 updates, the mean radius of the eight circles was set to 0.9◦, so that the 
mean size of the circles changed periodically at 5.7 Hz. The circle sizes in 
each array were determined using the same procedure as in Experiment 
1, ensuring that while the radius of each circle changed randomly, the 
mean radius of the eight circles changed periodically at 5.7 Hz. 

Procedure. Each participant completed 3 blocks of 40 trials. In the 
three blocks, the participants were required to attend to the ensemble 
pattern, the fixation, and a single item, respectively. In the attend-to- 
ensemble block, in 10 randomly selected trials, all circles were set to 
be of the same size for 1 s at a random time between 1 and 6 s after trial 
onset. In the attend-to-fixation block, in 10 randomly selected trials, the 
luminance of the fixation point was reduced from 104 to 82 cd/m2 for 
0.35 s at a random time between 1 and 6 s after trial onset. In the attend- 
to-item block, in 10 randomly selected trials, the Michelson contrast of 
the circle at the left side of the fixation was reduced from 1 to 0.93 for 
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0.47 s at a random time between 1 and 6 s after trial onset. The par-
ticipants were asked to detect whether the circles were of the same size 
(the attend-to-ensemble condition), the changes in luminance of the 
fixation (the attend-to-fixation condition), and changes in contrast of the 
left circle (the attend-to-item condition) in three blocks respectively, by 
pressing a key. In each trial, a 6-s stimulus sequence was presented, and 
participants were instructed to maintain fixation on a small point at the 
center of the display. There was a 1–1.5s interval between trials. The 
order of the 3 blocks was counterbalanced across participants. At the 
beginning of each block, the participants completed 5 trials to get 
familiar with the task. It took about 15 min to complete the whole 
experiment. 

2.4. EEG data acquisition and processing 

EEG signals were recorded continuously at 1000 Hz using two 
BrainAmp amplifiers and a 64-channel EasyCap (BrainProducts). FCz 
electrode was used as reference and electrode impedances were main-
tained below 5 kΩ during data acquisition. Horizontal and vertical 
electrooculograms were recorded by two additional electrodes around 
the subjects’ eyes. EEG signals were preprocessed using the FieldTrip 
toolbox (Oostenveld et al., 2011). They were re-referenced to the 
average value of all channels except two electrooculograms and were 
offline band-pass filtered between 0.1 and 40 Hz using a Butterworth IIR 
filter with the order of 2. The signals were then downsampled to the 
same frequency as the screen refresh rate (i.e., 120 Hz in Experiment 1 
and 85 Hz in Experiment 2) for temporal response function (TRF) esti-
mation (Lalor et al., 2006). Independent component analysis was per-
formed to remove eye-movement and artifact components, and the 
remaining components were back-projected onto the EEG electrode 
space. 6-s EEG epochs during stimulus sequence presentation were 
segmented for each trial and used for further analyses. 

2.5. SSVEP analysis 

Evoked activities were computed by averaging EEG epochs for each 
condition and each participant. FFT was applied to the evoked activities 
after applying a Hanning taper to calculate the power spectrum for each 
channel with a frequency resolution (the size of the frequency bins) of 
0.167 Hz. A baseline-correction procedure was used to extract SSVEP 
responses from baseline noise across the frequency spectrum (Meigen 
and Bach, 2000). Specifically, the difference between the power in the 
bin of interest and the mean power in the six surrounding bins was 
computed. In Experiment 2, only the trials without any manipulation 
were included in the analysis to exclude the influence of target detection 
on SSVEP. 

2.6. Predicting EEG responses using individual circle sizes and their 
interactions as predictors 

We used a forward TRF approach to predict EEG responses using 
individual circle sizes and their interactions as predictors. TRF describes 
the brain’s linear transformation of the stimulus input, S(t), to the neural 
response output, R(t), as R(t) = TRF * S(t), where * denotes the 
convolution operator (Jia et al., 2017, 2019; Lalor et al., 2006). TRF was 
defined as a 1 s length neural response to each unit change in a predictor 
and was computed by a regularized linear regression between the pre-
dictor value and EEG amplitude. A parameter λ was used to control 
overfitting in the ridge regression. 

In this study, we used eight circle sizes (I1-8, they are I1, I2, I3, I4, I5, I6, 
I7, I8), eight local interactions (L1-8, they are I1 × I2, I2 × I3, I3 × I4, I4 × I5, 
I5 × I6, I6 × I7, I7 × I8, I8 × I1) and a global interaction (G, that is I1 × I2 ×

I3 × I4 × I5 × I6 × I7 × I8) to predict EEG responses (Best and Wolf, 2015; 
Smith and Kutas, 2015; Werner and Noppeney, 2010): 

EEG=

(
∑8

i=1
TRFIi  *  Ii

)

+

(
∑8

i=1
TRFLi * Li

)

+ TRFG*G  

where Ii and TRFIi are the size of the i-th circle and the corresponding 
TRF, Li and TRFLi are the i-th local interaction and the corresponding 
TRF, and G and TRFG are the global interaction and the corresponding 
TRF. The individual size predictors represented the information of the 
eight circles, the local-interaction predictors represented the informa-
tion of interactions between two neighboring individuals, and the 
global-interaction predictor represented the information of the highest- 
order interaction over all circles (Smith and Kutas, 2015; Werner and 
Noppeney, 2010). 

The TRF-based EEG prediction was performed using the multivariate 
temporal response function (mTRF) toolbox (Michael J. Crosse et al., 
2016). The λ values in all models were set to 1 for all subjects in our 
experiments. Each predictor was converted to z score before model 
fitting to reduce structural multicollinearity (Frost, 2019). 

We quantified how well the individual circle sizes and their local and 
global interactions were encoded in the EEG signals using a leave-one- 
trial-out cross-validation procedure. TRFs were trained on N-1 trials 
and convolved with the predictors of the left-out trial to predict the 
channel-specific EEG signals (Broderick et al., 2019; Ding and Simon, 
2012). The squared Pearson correlation coefficient (Michael J. Crosse 
et al., 2016; Frost, 2019) between the predicted and the recorded EEG 
signals were used to quantify the predicted accuracy (i.e., predicted R2). 
The advantage of using predicted accuracy for model evaluation is that it 
is sensitive to model overfitting. Because it is impossible to predict 
random noise, the predicted accuracy must drop for an overfit model 
that adds random noise to the model as predictors (Michael J. Crosse 
et al., 2016; Frost, 2019). If the individual circle sizes and their in-
teractions were encoded in the EEG signals, the predicted accuracy 
should increase after adding these predictors to the TRF model. We 
defined a full model using the individual circle sizes, local interactions, 
and global interaction as the predictors of the TRF model to predict the 
EEG signals (the ILG model) (see above). We then defined three reduced 
models that used the individual circle sizes and the local interactions 
(the IL model), the individual circle sizes and the global interaction (the 
IG model), or the local interactions and the global interaction (the LG 
model) as the predictors to predict the EEG signals, respectively. The 
encoding of the individual circle sizes, the local interactions and the 
global interaction can be quantified as the predicted accuracy difference 
between the ILG and LG models, the ILG and IG models and the ILG and 
IL models, respectively. If the added predictor is encoded in the EEG 
signals, the predicted accuracy difference would be positive, and if not, 
negative or zero (Michael J. Crosse et al., 2016; Frost, 2019). 

After obtaining the predicted EEG signals in the full model and the 
three reduced models, we performed the same SSVEP analysis on the 
predicted EEG signals as on the recorded EEG signals to measure the 
base frequency power. To investigate the contribution of the individual 
circle sizes, the local interactions, and the global interaction to the 
ensemble size representation, the base frequency power of the predicted 
EEG signals was compared between the full model and the three reduced 
models. Our logic is that if a certain predictor contributes to the 
ensemble size representation, adding the predictor to the TRF model 
should increase the base frequency power. Otherwise, the base fre-
quency power will not increase (Frost, 2019). 

2.7. Statistical tests 

The statistical significance of SSVEP power and predicted accuracy 
against zero in single conditions were evaluated using nonparametric 
one-sample Wilcoxon signed-rank tests (two-tailed). The statistical sig-
nificance between conditions was evaluated using nonparametric Wil-
coxon signed-rank tests (two-tailed). All p values were Bonferroni 
corrected. Effect sizes (rank biserial correlation, rrb) were provided in all 
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tests. The difference of response accuracy across the three attention 
conditions in Experiment 2 was tested using a repeated measures 
ANOVA. 

3. Results 

3.1. SSVEP to the ensemble size 

The participants performed well in the oddball detection task in 
Experiment 1, with a response accuracy of 0.96 ± 0.01 (Mean ± SD). We 
first examined whether an SSVEP could be observed at the frequency of 
the ensemble size variation. In Experiment 1, while the sizes of the in-
dividual circles varied randomly and independently, the ensemble size 
varied at a base frequency of 8 Hz in all trials and at an oddball fre-
quency of 1 Hz in the oddball-present trials. The SSVEP power was 
computed for each participant and condition and then averaged across 
participants. At parieto-occipital electrodes, we found a clear 8 Hz 
SSVEP in both the oddball-present (Fig. 2a, left) and the oddball-absent 
trials (Fig. 2a, right) and a clear 1 Hz SSVEP only in the oddball-present 
trials (Fig. 2b). POz exhibited the strongest power (i.e., the peak power 
electrode). Consistent with the observation, at POz, significant higher- 
than-baseline SSVEPs at 8 Hz were found in both the oddball-present 
and the oddball-absent trials (both ps < 0.001), whereas there was no 
significant difference between them (W = 109.00, p = 0.393, rrb =

− 0.21) (Fig. 2c). This result reveals a neural signature of the ensemble 
size perception. 

3.2. Contributions of individual circle sizes, local interactions, and global 
interaction to the ensemble size representation 

Having demonstrated a neural signature of the ensemble size 
perception, we set out to explore the role of the local and global in-
teractions between individual circles in the ensemble size representa-
tion. If the brain linearly averages the neural responses to all the 
individual sizes, the ensemble size representation should be solely based 

on the individual size representations. On the other hand, the brain may 
also process and take account of local and global interactions between 
individual sizes (Hock and Schöner, 2016; Wagemans et al., 2012). 

To explore the two possibilities, we first evaluated the neural rep-
resentation of the individual circle sizes and their local and global in-
teractions in the recorded EEG signals at each electrode. Employing the 
TRF approach, we defined a full model (the ILG model) and three 
reduced models (the IL, IG, and LG models) to predict the EEG signals. In 
the full model, the individual circle sizes (I) and their local (L) and global 
(G) interactions were used as three predictors; in the reduced models, 
only two of the three predictors were used (see Methods). The neural 
representation of a predictor was quantified as the predicted accuracy 
(quantified by the squared Pearson correlation coefficient between the 
recorded and predicted EEG signals) difference between the full model 
and the reduced model without that predictor. For example, the neural 
representation of the individual sizes (I) was quantified as difference in 
the predicted accuracy between the ILG and LG models. 

As shown in Fig. 3a, the individual circle sizes, the local interactions, 
and the global interaction were mainly encoded at parieto-occipital 
electrodes, and the global interaction was encoded at frontal elec-
trodes additionally. We selected five electrodes, marked in Fig. 3a, with 
the best representation performance for the individual circle sizes, the 
local interactions, and the global interaction for further statistical ana-
lyses. The neural representation of the individual circle sizes, local in-
teractions, and global interaction were significantly above zero 
(individuals circle sizes: W = 276.00, p < 0.001, rrb = 1.00; local in-
teractions: W = 276.00, p < 0.001, rrb = 1.00; global interaction: W =
276.00, p < 0.001, rrb = 1.00) (Fig. 3b). Note that the predicted R2 are 
comparable to those in previous studies using the TRF approach (Bro-
derick et al., 2019; M.J. Crosse et al., 2016; M.J. Crosse et al., 2016) 
which are typically between 0.01 and 0.1. Furthermore, in our data 
analysis, the overall predicted R2 of the EEG signals was divided into 
three components, i.e., individual circle sizes, local interactions, and 
global interaction. The predicted R2 of the individual sizes and the local 
interactions were larger than that of the global interaction. This is 
because both the individual sizes and the local interactions had eight 
terms in the regression model, while the global interaction had only one 
term. Despite that, the significant representations of the interactions, 
especially the global interaction, in the EEG signals demonstrate the 
existence of an interaction mechanism during ensemble size perception 
in the brain. 

Next, we examined the contribution of the individual circle sizes, the 
local interactions, and the global interaction to the ensemble size rep-
resentation. We calculated the 8 Hz SSVEP power of the predicted EEG 
signals in the full model and the three reduced models. Following the 
same logic as above, if a predictor contributed to the ensemble size 
perception, adding the predictor to the model should increase the SSVEP 
power. Otherwise, the SSVEP power would not change or even decrease. 
The same five electrodes for each predictor as above were selected for 
statistical analysis. As shown in Fig. 3c, the neural representation of the 
global interaction (W = 216.00, p = 0.049, rrb = 0.57), rather than the 
individual circle sizes or the local interactions (individual circle sizes: W 
= 83.00, p = 0.294, rrb = − 0.40; local interactions: W = 82.00, p =
0.275, rrb = − 0.41), had a significant positive contribution to SSVEP 
predictive power. These results provide strong evidence for the key role 
of the global interaction in ensemble size perception. 

3.3. Attentional effect on the SSVEP to the ensemble size 

Studies have demonstrated that the ensemble representation is 
enhanced when attention is distributed over the global pattern, as 
opposed to when attention is focused on a single item (Baek and Chong, 
2020a; Chong and Treisman, 2005b; de Fockert and Marchant, 2008). 
Therefore, if the SSVEP in Experiment 1 is a neural signature of the 
ensemble size perception, we predict that the SSVEP should be enhanced 
when attention is paid to the global pattern. To explore this, Experiment 

Fig. 2. SSVEP at the frequency of the ensemble size variation. a. SSVEP to-
pographies at the frequency of the ensemble size variation in the oddball- 
present and the oddball-absent trials. b. Power spectrums of the EEG signals 
recorded at the peak-power electrode POz. Shaded areas around the curves 
denote one SEM (standard error of the mean) across participants. c. SSVEP 
power at the frequency of the ensemble size variation. Boxplot whiskers indi-
cate minimum to maximum values, horizontal lines inside boxes indicate me-
dians across participants, and boxes indicate values between the upper and 
lower data quartiles. ***p < 0.001. 
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2 included three attention conditions: attend-to-ensemble, attend--
to-fixation, and attend-to-item. 

The response accuracies were 0.78 ± 0.04, 0.84 ± 0.01, and 0.76 ±
0.03 for the attend-to-ensemble, attend-to-fixation, and attend-to-item 
conditions, respectively. There was no significant difference across the 
three conditions (F(2,42) = 2.19, p = 0.12, partial η2 = 0.10). 

Replicating the findings in Experiment 1, the largest SSVEP power 
was observed also at the POz electrode (Fig. 4) and significant SSVEPs at 
the base frequency were found in all the three conditions (attend-to- 
ensemble: W = 252, p < 0.001, rrb = 0.99; attend-to-fixation: W = 253, p 
< 0.001, rrb = 1.00; attend-to-item: W = 250, p < 0.001, rrb = 0.98). 

More importantly, the SSVEP power was significantly greater in the 
attend-to-ensemble condition than in the attend-to-fixation (W = 210, p 
= 0.016, rrb = 0.66) and attend-to-item (W = 213, p = 0.011, rrb = 0.68) 
conditions. No significant difference was found between the attend-to- 
fixation and the attend-to-item conditions (W = 170, p = 0.498, rrb =

0.34). These results are consistent with the attentional effect on 
ensemble perception at the behavioral level (Baek and Chong, 2020a; 
Chong and Treisman, 2005b; de Fockert and Marchant, 2008) and 
demonstrate that distributed attention over the global pattern enhances 
the specialized brain response to the ensemble size. 

3.4. Attentional effects on the contributions of individual circle sizes, local 
interactions, and global interaction to the ensemble size perception 

The manipulation of attention also allowed to examine how atten-
tional distribution over the circle array affects the neural representations 
of the individual circle sizes, the local interactions, and the global 
interaction, as well as their contributions to the SSVEP. As in Experiment 
1, we calculated the predicted accuracy differences between the full 
model and the three reduced models. The same five electrodes as in 
Experiment 1 were selected for statistical analyses. We found that the 
neural representation of the individual sizes was significant in all three 
attention conditions (Fig. 5a, all ps < 0.001), with no cross-condition 
differences (all ps > 0.05). Similarly, the neural representation of the 
local interactions was significant in all three conditions (Fig. 5b, all ps <
0.01), with no cross-condition differences (all ps > 0.05). However, the 
neural representation of the global interaction exhibited a different 
pattern (Fig. 5c). While the neural representation of the global interac-
tion was significantly above zero in the attend-to-ensemble condition 
(W = 253.00, p < 0.001, rrb = 1.00), it was not different from zero in the 
attend-to-fixation condition (W = 89.00, p = 0.704, rrb = − 0.30) and 
even significantly below zero in the attend-to-item condition (W =
18.00, p < 0.001, rrb = − 0.86). Importantly, the neural representation of 
the global interaction in the attend-to-ensemble condition was signifi-
cantly greater than those in the attend-to-fixation (W = 239.00, p <
0.001, rrb = 0.90) and the attend-to-item (W = 252.00, p < 0.001, rrb =

0.99) conditions, and there was no significant difference between the 
attend-to-fixation and the attend-to-item conditions (W = 179.00, p =

Fig. 3. Neural representation of the individual circle 
sizes, the local interactions, and the global interaction 
and their contributions to the SSVEP to the ensemble 
size. a. Topographies of predicted accuracy differ-
ences between the full and the three reduced models 
for quantifying the neural representation of the three 
predictors. Five electrodes with the best representa-
tion performance for each predictor, marked with 
asterisk, were selected for statistical analyses. b. 
Predicted accuracy differences between the full and 
the three reduced models, which were ascribed to the 
three predictors. c. Contributions of the three pre-
dictors to the SSVEP power. ***p < 0.001, *p < 0.05.   

Fig. 4. Attentional effect on the SSVEP to the ensemble size. a. Topographies of 
the SSVEP power in the three attention conditions. b. SSVEP power at POz in 
the three attention conditions. ***p < 0.001, *p < 0.05. 
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0.275, rrb = 0.42). These results demonstrated that the neural repre-
sentations of the individual circle sizes and the local interactions were 
not modulated by the attentional distribution. In contrast, the neural 
representation of the global interaction could be enhanced by distrib-
uted attention on the global pattern. 

Next, we directly examined how the contributions of the neural 
representation of the individual circle sizes, the local interactions, and 
the global interaction to the ensemble size perception were modulated 
by attention. We compared the SSVEP power of the predicted EEG signal 
in the full model with those in the three reduced models. As shown in 
Fig. 6, the neural representation of the individual sizes and the local 
interactions did not contribute significantly to the SSVEP power in all 
three attention conditions (all ps > 0.05). In contrast, the neural rep-
resentation of the global interaction contributed significantly to the 
SSVEP power in the attend-to-ensemble (W = 235.00, p < 0.001, rrb =

0.86) and attend-to-fixation conditions (W = 211.00, p = 0.014, rrb =

0.67), but not in the attend-to-item condition (W = 117.00, p = 1, rrb =

− 0.08). The contribution of the global interaction was significantly 

greater in the attend-to-ensemble condition than in the attend-to-item 
condition (W = 204.00, p = 0.031, rrb = 0.61), demonstrating that 
attention to the ensemble enhanced the contribution of the global 
interaction to the ensemble size perception. 

4. Discussion 

We used a frequency-tagging technique, steady-state visual evoked 
potential (SSVEP), in combination with the temporal response function 
(TRF) technique, to study the neural signature and computational 
principle of ensemble size representation. Our findings provided evi-
dence for a global mechanism of ensemble perception. Specifically, first, 
SSVEP showed clear electrophysiological responses that were synchro-
nized with the frequency of the mean size changes, revealing that the 
human brain has a specialized neural response to ensemble size 
perception; second, using the TRF approach to predict EEG responses to 
individual sizes and their local and global interactions, we identified 
that the global interaction of all items in the display was encoded in EEG 
signals and contributed directly and significantly to ensemble size 
perception; finally, we identified, for the first time, that the attentional 
enhancement effects on ensemble perception were accompanied with an 
increased contribution only from the global interaction component, 
suggesting that the attentional enhancement on ensemble size percep-
tion derives from the effect of attention on the global interaction pro-
cessing. Together, our findings support a specialized and global neural 
mechanism for ensemble size perception and suggest that the global 
interaction over all individuals contributes to ensemble size perception. 

The existence of a specialized and global neural mechanism for 
ensemble perception is much debated. The subsampling hypothesis ar-
gues that ensemble size can be accurately estimated by randomly sam-
pling and linearly averaging a few items strategically (Myczek and 
Simons, 2008; Solomon et al., 2011). However, this would not predict 
the EEG signals synchronized with the base frequency, which results 
from the variation of the mean size rather than combinations of a subset 
of individual items. Furthermore, the subsampling hypothesis could not 
explain the global interaction result, i.e., the interaction of all items 
contributed to the ensemble representation and was modulated by 
attention distribution. Together, these findings argue against the 
sub-sampling hypothesis. The present results thus support the 
summary-statistic representation hypothesis (Ariely, 2001; Chong and 
Treisman, 2003; Leib et al., 2016; Oh et al., 2019) and promote the 
existence of a global and specialized neural mechanism for ensemble 
perception. 

Studies have shown that estimate of ensemble sizes can be more 
accurate than that of individual sizes. A linear averaging principle ex-
plains this phenomenon (Allik et al., 2013, 2014; Alvarez, 2011; Baek 
and Chong, 2020a; Sun and Chong, 2020). Linear averaging of multiple 
items tends to cancel out random errors in the processing of individuals, 
resulting in higher precision in ensemble size estimate, although indi-
vidual size estimate is less accurate. However, this principle does not 
accommodate the attentional limitations, which restricts the visual 
processing to a limited number of individual sizes. Alternatively, the 
higher precision in the estimation of ensemble size can be achieved by 
utilizing interactions between individual items (Hock and Schöner, 
2016; Wagemans et al., 2012). Taking advantage of the TRF method, the 
present study permits examination of these theoretical hypotheses 
directly with EEG responses. In addition to the neural representations of 
the individual circles, we consistently observed neural representations 
of the local and global interactions in EEG responses during ensemble 
perception. Crucially, the global interaction directly contributed to 
ensemble size perception and the contribution was enhanced by global 
attention. These results concomitantly indicate that ensemble size 
perception utilizes the high-order interaction information among indi-
vidual sizes. 

While interdependency among individual items has not been dis-
cussed in previous studies, researchers have argued that simple 

Fig. 5. Attentional effects on the neural representation of (a) the individual 
circle sizes, (b) the local interactions, and (c) the global interaction in the three 
attention conditions. ***p < 0.001, **p < 0.01. 

Fig. 6. Attentional effects on the contributions of (a) the individual circle sizes, 
(b) the local interactions, and (c) the global interaction to the SSVEP on the 
ensemble size in the three attention conditions. ***p < 0.001, *p < 0.05. 
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linearization (e.g., simple averaging) could not generate efficient 
ensemble perception. Recent studies have demonstrated that the con-
tributions of individuals are weighted in their mean (Choi and Chong, 
2020) and variance (Jeong and Chong, 2021) computations for 
ensemble perception. Thus, these models and ours commonly suggest 
that ensemble perception is not achieved by simple averaging. However, 
because the present study did not manipulate the weights of individual 
circles and our TRF method could not compute the weights of individual 
circles in single trials, the current results could not examine the 
contribution of weighted averaging in ensemble perception. The global 
interaction component does not exclude the effect of weighted aver-
aging either. 

Intuitively, the ensemble size can be computed in a hierarchically 
connected, feedforward neural network. In this framework, low-level 
processing (i.e., the processing of individuals) determines high-level 
processing (i.e., the processing of the ensemble), and the representa-
tions of individual sizes are independent of each other. However, this 
pure feedforward framework does not explain the present results that 
the contribution of the representations of individuals to the ensemble 
size perception is not significant. It does not accommodate previous 
findings that the representations of individuals were degraded in 
ensemble perception (Allik et al., 2013, 2014; Ariely, 2001), either. The 
present results advocate recurrent computations (Edelman and Gally, 
2013; Jastrzębowska et al., 2021; Lamme and Roelfsema, 2000; Singer, 
2021) in ensemble size perception. The recurrent processing in the brain 
integrates the local visual elements and forms interactions between 
them (Roelfsema, 2006; Singer, 2021). Feedback connections from 
high-level visual areas may generate global interactions between all 
individual items, serving as a global mechanism for ensemble size 
perception. In contrast, the horizontal connections within each visual 
area could generate the local interactions. The function of interaction is 
thus a joint contribution of individuals which cannot be broken down to 
single ones. 

To date, only a limited number of studies have investigated the 
neural substrates involved in ensemble statistics processing. Cant and Xu 
(2012) reported that the anterior-medial ventral visual cortex responded 
to ensemble statistics, whereas the lateral occipital area responded to 
individual objects. Im et al. (2017) proposed that the dorsal and ventral 
visual streams were involved in the ensemble emotion perception and 
individual face expression perception, respectively. Tark et al. (2021) 
found a gradual increase of selective responses to the mean orientation 
of multiple stimuli along the visual hierarchy when the mean orientation 
was task-relevant. Future research should explore the neural substrates 
involved in representing the individual items, and their local and global 
interactions. 

The attention manipulation in Experiment 2 extends our knowledge 
of the influence of attention on ensemble size perception from behav-
ioral performance (Baek and Chong, 2020a; Chong and Treisman, 
2005b) to neural responses. Critically, our results confirm that the 
enhanced ensemble perception is accompanied with an increased 
contribution from the global interaction component rather than the in-
dividual item component. This finding suggests that the effect of 
attention on ensemble size perception derives from the effect of atten-
tion on the global interaction process. While it is a new finding in 
ensemble perception, attention improving interaction representation 
has been found widely at different visual hierarchies (Gordon et al., 
2019; Zhang et al., 2011). We speculate that distributed attention can 
directly facilitate visual systems to integrate information from multiple 
items and send feedback information from higher areas to multiple 
lower areas, promoting global interactions between local elements. 

In summary, the present study demonstrates a specialized and global 
neural mechanism for ensemble size perception in the brain. Specif-
ically, ensemble size perception utilizes the representation of the global 
interaction between all individual sizes, which is enhanced by distrib-
uted attention over the global pattern. 
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