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A B S T R A C T

Perceptual learning is often interpreted as learning of fine stimulus templates. However, we have proposed that
perceptual learning is more than template learning, in that more abstract statistical rules may have been learned,
so that learning can transfer to stimuli at different precisions. Here we provide new evidence to support this
view: Perceptual learning of Vernier discrimination at high noise, which has thresholds approximately 10 times
as much as those at zero noise, is initially non-transferrable to zero noise. However, additional exposure to a
noise-free Vernier-forming Gabor, which is ineffective alone, not only maximizes zero-noise fine Vernier dis-
crimination, but also further enhances high-noise Vernier performance. Such high-threshold coarse Vernier
training cannot impact the fine stimulus template directly. One plausible explanation is that the observers have
learned the statistical rules that can apply to standardized input distributions to improve discrimination, re-
gardless of the original precision of these distributions.

1. Introduction

Practice improves a person’s sensitivity to fine differences of basic
visual features. This perceptual learning process has been attributed to
neural tuning changes in early visual cortical neurons (Karni & Sagi,
1991; Fahle, Edelman, & Poggio, 1995; Schoups, Vogels, & Orban,
1995; Teich & Qian, 2003), or subsequent reweighting of the inputs
from these neurons (Mollon & Danilova, 1996; Dosher & Lu, 1998,
1999; Yu, Klein, & Levi, 2004; Law & Gold, 2009; Dosher, Jeter, Liu, &
Lu, 2013). These explanations are to some degree motivated or con-
strained by the frequent observations of learning specificities. That is,
perceptual learning of various visual tasks is often specific to the
trained retinal locations and feature dimensions (e.g., a specific or-
ientation or motion direction).

However, in a series of double training studies, we have demon-
strated that learning specificities can be significantly reduced or even
completely abolished. For example, Vernier learning, which is very
specific to the trained retinal location, can transfer completely to a new
location if the observers also perform an irrelevant task (e.g., motion
direction discrimination that by itself has no impact on Vernier dis-
crimination) at the new location, either simultaneously with or after
Vernier training (Xiao et al., 2008; Wang, Zhang, Klein, Levi, & Yu,
2012; Wang, Cong, & Yu, 2013; Wang, Zhang, Klein, Levi, & Yu, 2014).
Even top-down attention to the new location without bottom-up

stimulation, or bottom-up stimulation of the new location without ob-
servers’ awareness, is effective (Xiong, Zhang, & Yu, 2016). Similar
double training designs also work well to significantly reduce or remove
orientation and motion direction specificities (Zhang et al., 2010;
Zhang, Cong, Klein, Levi, & Yu, 2014; Zhang & Yang, 2014; Xiong, Xie,
& Yu, 2016). In addition, double training is able to enable complete
learning transfer to physically distinct stimuli, such as orientations
defined by gratings vs. symmetric dot patterns, and directions by first-
vs. second-order moving patterns, that are initially encoded by different
neural mechanisms (Wang et al., 2016). We thus propose that percep-
tual learning is more likely rule-based learning. That is, some statistical
rules of reweighting sensory inputs, such as reassigning weights on the
basis of z-scores in standardized input distributions, are learned, so that
learning can transfer to other stimulus conditions in principle (Xiao
et al., 2008; Zhang et al., 2010; Wang et al., 2016). Moreover, per-
ceptual learning may operate at a conceptual or semantic level (Wang
et al., 2016).

In this study we targeted a unique format of learning specificity.
First reported by Dosher and Lu (2005), and then confirmed by later
studies (Lu, Chu, & Dosher, 2006; Huang, Lu, Tjan, Zhou, & Liu, 2007;
Chang, Kourtzi, & Welchman, 2013; Chang, Mevorach, Kourtzi, &
Welchman, 2014), perceptual learning of discriminating a visual fea-
ture imbedded in zero external noise, such as orientation, motion di-
rection, or binocular disparity, can transfer to discrimination of the
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same feature imbedded in high external noise. However, learning of
feature discrimination at high noise transfers much less or little to the
same feature at zero noise.

We hypothesized that observers with feature discrimination training
at both zero and high noise may learn the same rules of reweighting
stimulus inputs, regardless of the dramatically different thresholds re-
quired for stimulus discrimination. More specifically, the observers
learn to reweight standardized stimulus inputs, so that feature learning
obtained at one noise level is in principle transferrable to a different
noise level. This hypothesis is tested with a variation of the double
training procedure in the current study. As its name stands, double
training consists of two training tasks. One is the primary training task,
which is Vernier training at high external noise here. The other is the
secondary training task, which is orientation discrimination training
here with a noise-free Gabor, a pair of which would form the Vernier
stimulus. The outcomes of double training did show complete transfer
of Vernier learning from high noise to zero noise.

2. Methods

The apparatus, stimuli, and procedures are identical to those used in
a recently published study of ours (Xie & Yu, 2018). The relevant details
are replicated here for readers’ convenience.

2.1. Observers and apparatus

The observers consisted of 34 undergraduate and graduate students
(18–27 years old, 15 males and 19 females) at Peking University with
normal or corrected-to-normal vision. They were inexperienced in
psychophysical observations and were unaware of the purposes of the
experiments. Informed written consents, which were approved by the
Peking University IRB, were collected before data collection. This work
was carried out in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki).

The stimuli were generated with Psychtoolbox-3 (Pelli, 1997) and
presented on a 21-in CRT monitor (1024 pixel× 768 pixel,
0.39 mm×0.39mm pixel size, 120 Hz frame rate, and 33.4 cd/m2

mean luminance). The screen luminance was linearized by an 8-bit
look-up table. Viewing was through a circular opening (dia-
meter= 17°) of a black cardboard that covered the rest of the monitor
screen at a distance of 1m. The head of the observers was stabilized
with a chin-and-head rest. Experiments were run in a dimly lit room.

2.2. Stimuli

The Vernier stimulus consisted of two identical Gabors (Gaussian-
windowed sinusoidal gratings) imbedded in various levels of external
noise in a circular window (radius= 2°) (Fig. 1a), and was presented on
a mean luminance screen background. The Vernier was centered on one
visual quadrant at 5° retinal eccentricity. The two Gabors had the same
spatial frequency (3 cpd), standard deviation (0.67°), contrast (0.47),
orientation (vertical), phase (0°), and a center-to-center distance of
1.33°. To form a specific Vernier offset, the position of each Gabor
shifted half the Vernier offset away in opposite directions perpendicular
to the Gabor orientation. Each noise element was 4× 4 pixel, with the
luminance sampled from the look-up-table following a Gaussian dis-
tribution. The root mean square (rms) contrast of the external noise was
0%, 5%, 9%, 16%, or 29%. In actual experiments the Vernier and the
noise stimuli were presented in alternating frames, with 6 frames each
for a total duration of 100ms.

The stimuli for orientation discrimination training were Gabors and
bilaterally symmetric dot patterns centered in a quadrant diagonal to
the Vernier stimulus at 5° retinal eccentricity. The Gabor was identical
to those forming the Vernier stimulus. The symmetric dot pattern
consisted of 18 pairs of bilaterally symmetric white dots (0.1° dia-
meter), which were confined to an area divided into 18× 18 invisible

square compartments (0.16°× 0.16° each) (Fig. 3b). The location of
each dot was randomly jittered by 0–0.04° from the compartment
center. After positioning the 18 dots on one side of the symmetry axis,
the whole symmetric pattern was generated by placing another 18
mirror-imaged dots on the other side. For each stimulus presentation,
the dot pattern was regenerated, preventing the observers from using
local cues in the orientation discrimination task. The reference or-
ientation of the Gabor or symmetry axis was 36°.

2.3. Procedures

The Vernier threshold was measured with a one-interval staircase
procedure. In each trial, a small fixation cross preceded the Vernier by
500ms and stayed throughout the trial. The Vernier was presented for
100ms. Observers reported whether the lower Gabor was to the left or
right of the upper Gabor by key press. Auditory feedback was given on
incorrect responses.

The orientation discrimination threshold was measured with a two-
interval forced-choice staircase procedure. In each trial, a small fixation
cross preceded the first interval by 500ms and stayed throughout the
trial. The Gabors or symmetric dot patterns at the reference orientation
and the test orientation (reference+ Δori) were shown in two 100-ms
stimulus intervals, respectively, in a random order. The two stimulus
intervals were separated by a 500-ms inter-stimulus interval. The ob-
servers judged which stimulus interval contained the more clockwise-
oriented stimulus. Auditory feedback was given on incorrect responses.

Thresholds were estimated following a 3-down-1-up staircase rule
that converged at a 79.4% correct response rate. Each staircase con-
sisted of four preliminary reversals and six experimental reversals
(approximately 50–60 trials). The step size of the staircase was 0.05 log
units. The geometric mean of the experimental reversals was taken as
the threshold for each staircase run.

In a pre- or post-training session, the Vernier thresholds at five noise
contrasts were measured at two diagonal locations in a counterbalanced
order, with each condition tested for 5 staircases, for a total of 50
staircases. These 50 staircases were completed in two daily sessions
with the test sequence preset with a permuted table. The training ses-
sions lasted six days, each consisting of 10 staircases of Vernier task at
the highest noise and/or 10 staircases of an orientation discrimination
task at zero noise and lasting for 1–1.5 h.

2.4. Experimental design & statistical analysis

Sequential and simultaneous double training designs were used.
Sequential double training consisted of 10 blocks (staircases) of Vernier
training at the highest noise in the first six-day training phase, and 10
blocks of orientation discrimination training at zero noise in the second
six-day training phase. Vernier performance at five noise levels and two
Vernier and orientation training locations were measured, five blocks
per condition, before and after each training phase. Simultaneous
double training consisted of 10 blocks of Vernier task at the highest
noise alternating with 10 blocks of orientation discrimination training
at zero noise in the same daily session for six days. Vernier performance
at five noise levels and two Vernier and orientation training locations
were measured, five blocks per condition, before and after training.

Data were analyzed with SPSS 20 (SPSS INC, Chicago, IL, USA). The
learning and transfer effects were measured by the percent threshold
improvement from pre- to post-test sessions, which was (thresh-
oldpre− thresholdpost)/thresholdpre. Repeated-measures ANOVAs
tested the main effects of training, noise level, and stimulus location.
Bonferonni corrections adjusted the estimate of the training effects at
each noise level.

3. Results

Main experiments: Transfer of Vernier learning from high to zero
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noise with double training
First in a sequential double training experiment, seven observers

initially completed baseline training, in which they practiced Vernier
discrimination at the highest noise contrast (rms contrast= 0.29) at
one quadrant for six days. In pre- and post-training sessions, they
completed the same Vernier task at a full range of noise contrasts (rms
contrast= 0–0.29) at the training location and a diagonal transfer lo-
cation (Fig. 1a). Training improved Vernier thresholds significantly at
three higher noise contrasts at the training location (19.9 ± 5.0%, F1,
6= 15.62, p=0.008 at 0.09 rms contrast; 23.7 ± 6.7%, F1, 6= 12.44,
p=0.012 at 0.16 rms contrast; and 32.2 ± 10.1%, F1, 6= 10.14,
p=0.019 at 0.29 rms contrast), but not at two lower noise contrasts
(−6.2 ± 8.6%, F1, 6= 0.52, p=0.496 at 0 rms contrast; and
−0.7 ± 9.7%, F1, 6= 0.01, p=0.942 at 0.05 rms contrasts) (Fig. 1b,
from pre to post1), consistent with Dosher and Lu (2005) that training
at high noise had little impact on performance at low noise. At the
untrained diagonal location, Vernier thresholds were also reduced at
the highest noise contrast (28.0 ± 9.8%, F1, 6= 8.20, p=0.029 at
0.29 rms contrast) (Fig. 1b).

We suspected that the non-transfer of Vernier learning from high to
zero noise was caused by the observers’ lack of clear stimulus knowl-
edge at zero noise, which was largely unavailable when the Vernier was
imbedded in high noise. Therefore, as the second part of sequential
double training, the same observers continued to practice an orienta-
tion discrimination task with a noise-free Gabor, two of which formed
the Vernier pattern, at the diagonal location (Fig. 1a). This sequential

training reduced Vernier thresholds at two lower noise contrasts at both
Vernier and orientation training locations (22.0 ± 7.9%, F1, 6= 7.66,
p=0.031 at 0 rms contrast, and 22.3 ± 5.7%, F1, 6= 15.09,
p=0.008 at 0.05 rms contrast, at the Vernier training location; and
20.0 ± 4.9%, F1, 6= 16.64, p= 0.007 at 0 rms contrast, and
27.1 ± 5.6%, F1, 6= 23.41, p= 0.003 at 0.05 rms contrast, at the
orientation training location) (Fig. 1b, from post1 to post2). Moreover,
Vernier thresholds were further improved at three higher noise con-
trasts at the Vernier training location (16.3 ± 6.2%, F1, 6= 6.84,
p=0.040 at 0.09 rms contrast, 10.8 ± 3.4%, F1, 6= 10.24, p= 0.019
at 0.16 rms contrast, and 15.2 ± 5.7%, F1, 6= 7.11, p=0.037 at
0.29 rms contrast), as well as at the highest noise contrast at the or-
ientation training location (18.0 ± 4.5%, F1, 6= 15.63, p=0.008 at
0.29 rms contrast), suggesting that direct Vernier training at high noise
did not optimize the performance. The overall (post2 vs. pre) im-
provements at five noise levels from low to high were 18.7 ± 9.0%,
22.8 ± 8.4%, 32.1 ± 7.5%, 31.8 ± 7.0%, and 44.5 ± 6.5% at the
Vernier training location, and 25.2 ± 6.1%, 26.4 ± 5.5%,
30.2 ± 6.2%, 22.0 ± 4.9%, 40.8 ± 7.8% at the orientation training
location, respectively (Fig. 1c), which will be further analyzed later.

The transfer results were then replicated in a simultaneous double
training experiment. A new group of observers practiced Vernier dis-
crimination at the highest noise at one quadrant and Gabor orientation
discrimination at zero noise at diagonal locations in alternating blocks
of trials within the same training sessions (Fig. 2a). This simultaneous
double training improved Vernier thresholds at three higher noise

Fig. 1. The effects of sequential double training with Vernier training at high noise and orientation training at zero noise at diagonal locations. a. Stimuli and task.
Initial Vernier training at the highest noise was followed by orientation training at zero noise at a diagonal location. b. Threshold vs. noise contrast functions of pre-
training, post-Vernier training (post1), and post-orientation training (post2), at the Vernier and orientation training locations. Each function was fitted with an
equation = ∗ +Th (N N )2 1

k e
2r

i
2 , in which Th stood for threshold, Ne stood for external noise contrast, and k, r, and Ni were free parameters. More details are presented

in Xie and Yu (2018). c. Vernier threshold improvements after initial Vernier training (post1 vs. pre) and subsequent orientation training (post2 vs. pre) at the Vernier
(left) and orientation (right) training locations. Error bars indicate± 1 standard error of the mean.
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contrasts at the Vernier training location (25.6 ± 3.1%, F1, 7= 68.09,
p < 0.001 at 0.09 rms contrast, 33.0 ± 8.8%, F1, 7= 14.20,
p=0.007 at 0.16 rms contrast, and 43.9 ± 5.0%, F1, 7= 78.03,
p < 0.001 at 0.29 rms contrast) and the orientation training location
(29.1 ± 7.4%, F1, 7= 15.23, p=0.006 at 0.09 rms contrast,
32.4 ± 6.6%, F1, 7= 23.85, p=0.002 at 0.16 rms contrast, and
44.9 ± 5.7%, F1, 7= 61.37, p < 0.001 at 0.29 rms contrast). Criti-
cally, Vernier thresholds at two lower noise contrasts were also sig-
nificantly improved at the Vernier training location (22.4 ± 7.3%, F1,
7= 9.32, p=0.019 at 0 rms contrast, and 20.5 ± 7.2%, F1, 7= 8.14,
p=0.025 at 0.05 rms contrast), though not at the orientation training
location (16.0 ± 11.0%, F1, 7= 2.12, p=0.189 at 0 rms contrast, and
16.9 ± 8.2%, F1, 7= 4.21, p=0.079 at 0.05 rms contrast) (Fig. 2b, c).

We pooled data from both sequential and simultaneous double
training experiments to compare the learning effects at five noise levels
(Fig. 2d). A repeated-measures ANOVA indicated significant main ef-
fects of training (F1, 14= 68.17, p < 0.001) and noise contrast (F4,
56= 11.15, p < 0.001), but insignificant main effects between the two
locations (F1, 14= 0.12, p= 0.737). The post-hoc analyses revealed
significant Vernier learning at all noise levels (20.5 ± 5.4%, F1,
14= 14.24, p= 0.002 at 0 rms contrast, 21.4 ± 4.4%, F1, 14= 23.26,
p < 0.001 at 0.05 rms contrast, 29.1 ± 3.6%, F1, 14= 66.56,
p < 0.001 at 0.09 rms contrast, 30.0 ± 4.4%, F1, 14= 46.70,
p < 0.001 at 0.16 rms contrast, and 44.0 ± 3.5%, F1, 14= 157.22,
p < 0.001 at 0.29 rms contrast). Moreover, the Vernier improvements
at zero noise at two locations, as well as the direct Vernier training
effect at zero noise (27.4 ± 5.2%), were not significantly different
among each other (F2, 34= 0.28, p= 0.756, one-way ANOVA),

suggesting that double training likely maximized Vernier performance
at zero noise. Here the direct Vernier training data were from a pub-
lished experiment with the same pre- and post-tests as here, and with
Vernier training at zero noise using the identical stimulus and proce-
dure (Xie & Yu, 2018). These results together suggest that double
training can enable learning transfer from high to zero noise and
maximize Vernier performance at all noise levels, and the learning can
transfer to the orientation-training location completely.

3.1. Control 1: The effect of secondary orientation training at high noise

In the above experiments, the stimulus with secondary orientation
training was a Vernier-forming Gabor at zero noise. The purpose of
using this noise-free Gabor was for the observers to obtain clear sti-
mulus knowledge, so as to facilitate learning transfer from high noise to
low noise. Two control experiments were performed to support this
possibility. In the first control (Fig. 3a), seven new observers repeated
the above simultaneous double training experiment, with the exception
that the secondary orientation task was performed with the Gabor
imbedded in the highest noise.

The new double training improved Vernier thresholds only at three
higher noise contrasts at the Vernier training location (19.3 ± 5.3%,
F1, 6= 10.60, p=0.017 at 0.09 rms contrast, 13.8 ± 6.2%, F1,
6= 4.93, p= 0.068 at 0.16 rms contrast, and 28.9 ± 4.1%, F1,
6= 48.74, p < 0.001 at 0.29 rms contrast) and the highest noise
contrast at the orientation training location (20.7 ± 6.9%, F1,
6= 9.06, p= 0.024 at 0.29 rms contrast) (Fig. 3a). Therefore, learning
transfer from high noise to low noise did not happen when the same

Fig. 2. The effects of simultaneous double training with Vernier training at high noise and orientation training at zero noise at diagonal locations. a. Stimuli and task.
Vernier training at the highest noise and orientation training at zero noise were performed in alternating blocks of trials within the same training sessions. b. Pre- and
post-training threshold vs. noise contrast functions at the Vernier and orientation training locations. c. Vernier threshold improvements after simultaneous double
training at the Vernier and orientation training locations. d. Vernier threshold improvements averaged over the sequential (post2 vs. pre) and simultaneous double
training. Error bars indicate± 1 standard error of the mean.
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Gabor in the secondary training task was imbedded in high noise.

3.2. Control 2: The effect of secondary orientation training with a non-
Gabor stimulus at zero noise

In the second control, we examined whether the stimulus in the
secondary orientation training had to be the same Vernier-forming

Gabor as in earlier double training. Six observers practiced Vernier at
the highest noise, as well as orientation discrimination of symmetry dot
patterns (symmetric axis) (Fig. 3b). This double training improved
Vernier thresholds only at the highest noise contrast at the Vernier
training location (44.1 ± 9.5%, F1, 5= 21.66, p= 0.005 at 0.29 rms
contrast) and at two higher noise contrasts at the orientation training
location (23.9 ± 8.0%, F1, 5= 8.92, p=0.031 at 0.16 rms contrast,

Fig. 3. Three control experiments. a. Control 1: The effects of double training with Vernier and orientation training both at the highest noise at two diagonal
locations. (i) Stimuli for Vernier and orientation discrimination at diagonal locations. (ii) Pre- and post-training threshold vs. noise contrast functions at the Vernier
and orientation training locations. (iii) Vernier threshold improvements at the Vernier and orientation training locations. b. Control 2: The effects of double training
with Vernier training at high noise and symmetry-axis orientation training at zero noise at diagonal locations. (i) Stimuli for Vernier and orientation discrimination
training. The red line indicates the symmetry-axis that was invisible in the real experiment. (ii) Pre- and post-training threshold vs. noise contrast functions at the
Vernier and orientation training locations. (iii) Vernier threshold improvements at the Vernier and orientation training locations. c. Control 3: The pre-test effect. (i)
The pre- and post-test threshold vs. noise contrast functions with no training performed during the one-week gap. (ii) Vernier threshold improvements at each noise
contrast. Error bars indicate± 1 standard error of the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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and 47.6 ± 13.8%, F1, 5= 11.92, p=0.018 at 0.29 rms contrast).
Therefore, to enable coarse-to-fine Vernier learning transfer, the sti-
mulus in the secondary orientation training task needs to be the same
Gabor to provide clear stimulus information.

3.3. Control 3: The effect of pre-test

In the earlier experiments, the pre-tests at the Vernier or orientation
training location were completed with 25 blocks of trials at five noise
contrasts, which alone could lead to threshold improvements. To
measure the potential pretest effects, six new observers performed pre-
and post-test Vernier tasks at five noise contrasts at two diagonal lo-
cations while skipping the training sessions. The pre- and post-tests
were separated by about one week. The Vernier thresholds and im-
provements at the two locations were averaged. The results showed no
significant main effects of training (F1, 5= 3.71, p=0.112) and noise
contrast (F4, 20= 1.00, p= 0.431), indicating minimal pre-test effects
(Fig. 3c).

4. Discussion

Perceptual learning is often interpreted as training-induced neural
plasticity in early sensory areas (Karni & Sagi, 1991; Schoups et al.,
1995; Crist, Kapadia, Westheimer, & Gilbert, 1997), or post-receptor
reweighting of sensory inputs that improves stimulus templates with no
need of plasticity in the receptors per se (Mollon & Danilova, 1996;
Dosher & Lu, 1998, 1999; Yu et al., 2004; Law & Gold, 2009; Dosher
et al., 2013). Our study essentially extends the view of response re-
weighting by demonstrating that perceptual learning is more than
learning of rigid stimulus templates. Rather the rules of reweighting the
sensory inputs are learned that treat stimulus signals at zero and high
noise equally even if the thresholds could be very different. This could
be done through standardization of the distributions of visual inputs at
different noise levels. This conclusion is in agreement with our general
proposal that perceptual learning improves reweighting rules that are
independent of stimulus location, feature dimension, physical proper-
ties, putative neuronal encoders, and threshold ranges (Xiao et al.,
2008; Zhang et al., 2010; Wang et al., 2016), as well as of fineness or
coarseness of the stimulus feature at various noise levels in the current
case. These statistical reweighting rules apply to standardized stimulus
distributions, rather than to raw stimulus data.

Several studies have investigated the brain mechanisms underlying
fine feature learning at zero noise and coarse feature learning at high
noise. Chowdhury and DeAngelis (2008) reported that training of fine
disparity discrimination, which relies on ventral areas like V4 and IT,
also improves a monkey’s coarse discrimination. Moreover, coarse
discrimination is no longer affected by temporal chemical inactivation
of MT. Because the disparity tuning in MT neurons are unchanged,
Chowdhury and DeAngelis (2008) attributed the changes to plasticity in
downstream decision circuitries. Similarly, Chang et al. (2014) reported
that after fine disparity learning, coarse disparity discrimination is no
longer disturbed by TMS inactivation of the posterior parietal cortex,
but both fine and coarse disparity discrimination is interrupted by in-
activation of the lateral occipital cortex that only deals with fine dis-
parity discrimination before training. Chang et al. (2014) thus made a
specific assumption that training changes the weights of ventral and
dorsal processing in coarse disparity discrimination, so that the ventral
areas, which may store the learned stimulus template, now limit both
fine and coarse feature discrimination.

Our new findings of two-way learning transfer between fine features
at zero noise and coarse features at high noise provide new constraints
and insights on the mechanisms of fine and coarse feature learning at
different levels of noise. First, a precise stimulus template, regardless of
where it is stored, would not predict coarse-to-fine learning transfer.
The post-training Vernier thresholds at high noise were still many times
as high as those at zero noise (Figs. 1 and 2), so learning with coarse

Vernier could hardly improve the fine stimulus template. Second, the
two-way transfer suggests that the plasticity may occur in brain areas
that are untied to fine or coarse stimulus features. This possibility is
consistent with Chowdhury and DeAngelis (2008) who suspected
plasticity in downstream decision circuitries, as well as reports that
relate perceptual learning mainly to changes in decision areas (Law &
Gold, 2008; Kahnt, Grueschow, Speck, & Haynes, 2011). For example,
Law and Gold (2008) reported that motion direction learning in mon-
keys is correlated to changes in decision area LIP neurons, but not to
changes of motion area MT neurons. We predict that at least certain
brain areas would make sensory decisions on the basis of standardized
sensory inputs, which surely requires future neurophysiological and
brain imaging evidence to elaborate.
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