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Humans’ judgment of relative-frequency, similar to their use of probability

in decision-making, is often distorted as an inverted-S-shape curve—small

relative-frequency overestimated and large relative-frequency underestimated. Here we

investigated how the judgment of relative-frequency, despite its natural reference points

(0 and 1) and stereotyped distortion, may adapt to the environmental statistics. The

task was to report the relative-frequency of black (or white) dots in a visual array of

black and white dots. We found that participants’ judgment was distorted in the typical

inverted-S-shape, but the distortion curve was influenced by both the central tendency

and spread of the distribution of objective relative-frequencies: the lower the central

tendency, the higher the overall judgment (contrast effect); the higher the spread, the

more curved the inverted-S-shape (curvature effect). These context effects are in the

spirit of efficient coding but opposite to what would be predicted by Bayesian inference.

We further modeled the context effects on the level of individual trials, through which we

found not only a trial-by-trial adaptation, but also the non-linear sequential effects that

were recently reported mainly in circularly distributed visual stimuli.

Keywords: probability distortion, subjective probability, frequency estimation, sequential effect, adaptation,

Bayesian inference, efficient coding

INTRODUCTION

The human perceptual system adapts to the environmental statistics from time to time (Helson,
1947; Gilchrist et al., 1999; Dean et al., 2005; Chopin and Mamassian, 2012; Gepshtein et al., 2013).
For example, a lighted outdoor sign that dazzles at night may look dim in the daylight. Adaptation
like this allows the human brain to use neurons of limited dynamic range to represent the immense
dynamic range of physical stimuli (109 for luminance, from star light illumination to intense
daylight conditions). But it comes at a cost: in order to be sensitive to differences in the current
environment, the mapping from physical stimuli to perception must be non-stationary. That is, a
stimulus that is physically 5 times as large as a second stimulus may be perceived 10 times as large as
the latter in one context and only 2 times as large in a different context. This non-stationarity can be
harmless in many situations (e.g., in the perception of lightness), where only ordering information
(e.g., which is brighter and which is darker) is required.
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Here we investigated how the judgment of relative-frequency
may adapt to the environment. For the perception of relative-
frequency, adaptation can be both helpful and harmful. On
one hand, relative-frequency in real life, like luminance, has
a vast dynamic range that may challenge the neural system.
For example, the relative-frequencies of different causes of
death span six orders of magnitude (Lichtenstein et al., 1978).
On the other hand, as a source of probability information,
relative-frequency needs an accurate representation. Any non-
stationary transformations accompanying adaptation would hurt
one’s ability to maximize expected gain in decision-making.

Relative-frequency differs from many sensory stimuli in its
abstractness and in its finite range—from 0 to 1. What is
special about relative-frequency is also its stereotyped distortion:
Humans’ judgment of relative-frequency, similar to their use of
probability in decision-making (Tversky and Kahneman, 1992;
Gonzalez and Wu, 1999), is often distorted in an inverted-S-
shape—small relative-frequency overestimated and large relative-
frequency underestimated. For example, people overestimate
the relative-frequency of rare causes of death such as flood
and hurricane and underestimate that of common causes such
as heart disease (Lichtenstein et al., 1978; see Zhang and
Maloney, 2012 for more examples). The opposite pattern, S-
shaped distortion, was also reported (Shuford, 1961; Pitz, 1966;
Brooke and MacRae, 1977; Wu et al., 2009). Zhang and Maloney
(2012) found that the inverted-S- or S-shaped distortion in a
variety of tasks could be well-captured by a Linear-in-Log-Odds
(LLO) transformation:

λ
[

π
(

p
)]

= γ λ
[

p
]

+ (1− γ ) λ
[

p0
]

, (1)

where p and π
(

p
)

respectively denote objective and subjective
probability or relative-frequency, λ [·] denotes the log-odds
transformation, λ

[

p
]

= log
p

1−p , and γ and p0 are free

parameters that are readily interpretable. The parameter γ

indicates the slope of the distortion curve, with γ < 1 for
inverted-S-shaped distortion, γ = 1 for no distortion, and
γ > 1 for S-shaped distortion. The parameter p0 indicates the
crossover point where π

(

p
)

= p. In other words, the γ and
p0 are measures respectively for the curvature and elevation of
probability distortion (Gonzalez and Wu, 1999).

In our experiment, participants judged the relative-frequency
of black (or white) dots among an array of black and white dots
(Figure 1A). There were four conditions for the distribution of
the objective relative-frequency p (Figure 1B). In the baseline
Uniform condition, p was uniformly distributed between 0.01
and 0.99. The Small (Large) condition differed from the Uniform
condition mainly in the central tendency of the distribution by
having a disproportionally great number of very small (large)
values of p. The Extreme condition was U-shaped (i.e., most
values were extreme) and differed from the Uniform condition
in the spread of the distribution.

We asked two questions. The first question is whether and
how participants’ judgment of relative-frequency, π

(

p
)

, may
vary with the distribution of p. There has been increasing
evidence that adaption functions not only for sensory modalities,
but also for abstract quantities such as utility (Tobler et al.,

2005; Kobayashi et al., 2010; Louie et al., 2013; Khaw et al.,
2017; Rustichini et al., 2017), numerosity (Burr and Ross, 2008;
Cicchini et al., 2014), rate (Levitan et al., 2015), and variance
(Payzan-LeNestour et al., 2016), in the form of contrast effects:
the same quantity tends to be perceived larger in a context of
small quantities and smaller in contrast with large quantities.
Such contrast effect was also found for relative-frequency in a task
similar to ours (Varey et al., 1990).

What concerned us are not individual values but how the
whole curve of π

(

p
)

may change with the context and what
principles the changes may follow. We considered two lines of
theories that provide opposite predictions for the possible context
effects (see Figure 2 for the simulated predictions). One line
of theories is represented by the adaption-level theory (Helson,
1947; Parducci, 1965), which assumes that the perception of a
specific stimulus reflects the difference between the stimulus and
an internal reference point. The value of the reference point,
called “adaptation level”, is determined by the average value of
the stimuli in the context. The adaptation-level theory predicts
a contrast effect (Figure 2A): The Small condition, which had
a lower central tendency than the Uniform condition, would
lead to a higher elevation for the π

(

p
)

curve, while the Large
condition would lead to a lower elevation than the Uniform
condition. Because the adaptation level is not influenced by the
spread of the distribution, the adaptation-level theory predicts
no difference between the Extreme condition and the Uniform
condition.

The second line of theories treats perceptual judgment as
a Bayesian inference problem [see (Maloney and Zhang, 2010;
Petzschner et al., 2015) for reviews]—inferring the true value of a
physical stimulus (in the current experiment, relative-frequency)
based on its noisy percept. To compensate for the uncertainty in
the percept, the final judgment would combine the percept and
prior information about the stimulus. If the prior participants
used follows the distribution of p’s they had experienced in the
experiment, their judgment would be biased toward the high-
density regions of the distribution. Thus, the Bayesian inference
theory predicts an assimilation effect (Figure 2B): The Small
condition, which had high densities on the small end, would
have a lower elevation than the Uniform condition, while the
Large condition would have a larger elevation than the Uniform
condition. Similarly, for the U-shaped Extreme condition, the
concentration of p’s on the two ends would attract π

(

p
)

toward
the two ends, that is, a steeper slope than the Uniform condition.

Our second question is how the context effects, if any, may
arise from trial to trial. In our experiment, participants were
never explicitly informed about the distribution of p and could
only learn the distribution via individual trials. We modeled two
processes on the level of individual trials. The first process is
a trial-by-trial updating of reference point, which is a natural
extension of the adaptation-level theory with the additional
assumption that the adaptation level (reference point) is updated
by the delta rule (Rescorla and Wagner, 1972). As the result, the
reference point assigns higher weights to more recent trials and
would be able to track the changes in the context.

The second process we investigated is the sequential effect,
that how the stimulus or response of a precedent trial may
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FIGURE 1 | The experiment: judgment of relative-frequency. (A) Time course of a trial. The task was to judge the relative-frequency of the black (or white) dots in the

array of black and white dots and to report the judgment on the 0–100% scale. (B) Distributions of the objective relative-frequencies in the four experimental

conditions. The values of the objective relative-frequencies (denoted p) could be 0.01, 0.02, … , 0.99. Those in the ranges of [0.01, 0.10] and [0.90, 0.99] were

referred, respectively, as the small and large p’s. “U” denotes the condition with a Uniform distribution of p. “E” denotes the condition where the Extreme (small and

large) p’s dominated. “S” denotes Small p’s dominated. “L” denotes Large p’s dominated.

bias the current response. A common practice to quantify the
sequential effect (Pegors et al., 2015) is to regress the current
response (Rn) against the stimulus (Sn−i) or response (Rn−i) i-
trial back, i = 1, 2, ...,m. In this way, it is assumed that Rn changes
linearly with Sn−i or Rn−i, or, in other words, the sequential effect
is linear. Most sequential effects documented in the literature are
linear sequential effects (Fründ et al., 2014). Fischer andWhitney
(2014), however, reported a non-linear sequential effect in the
perception of orientation: the sequential effect first increases then
decreases as the distance between the previous stimulus and
current stimulus increases. Non-linear sequential effects were
also found in the perception of motion (Alais et al., 2017),
facial identity (Liberman et al., 2014) and numerosity (Cicchini
et al., 2014), and in visual working memory of colors (Makovski
and Jiang, 2008). We were interested in whether there were
similar non-linear sequential effects in the judgment of relative
frequency and how these inter-trial effects might contribute to
the global context effect.

Here is a brief summary of our experimental results: we
found that the judgment of relative-frequency is distorted, as
typical, but the distortion curve changes with the distribution
of relative-frequencies in both curvature and elevation. The
observed context effect in elevation agrees with the prediction
of the adaptation-level theory but opposite to that of Bayesian
inference, while the effect in curvature can be accounted
by neither theory but conforms to the principle of efficient

coding (Attneave, 1954; Barlow, 1961; Simoncelli and Olshausen,
2001; Wei and Stocker, 2012, 2015; Burr and Cicchini, 2014;
Summerfield and Tsetsos, 2015). On the level of individual trials,
we found evidence for a trial-by-trial adaptation and a non-linear
sequential effect, which could partly account for the observed
context effects.

METHODS

Ethics Statement
The experiment had been approved by the Institutional Review
Board of School of Psychological and Cognitive Sciences
at Peking University. All participants gave written informed
consent in accordance with the Declaration of Helsinki.

Participants
Sixty-four students of Peking University participated (28
male, aged 18–29) and were randomly assigned into four
experimental conditions, with 16 participants for each condition.
All participants had normal or corrected-to-normal vision. The
experiment took ∼70min and participants received 50 RMB (≈
8 USD) for their time.

Apparatus and Stimuli
Participants were seated∼86 cm (i.e., 1.5 cm≈ 1◦ of visual angle)
in front of a 21.5′′ iMac monitor (47.3 × 26.6 cm, 1,920 × 1,080

Frontiers in Psychology | www.frontiersin.org 3 September 2018 | Volume 9 | Article 1691

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Ren et al. Adaptive Judgment of Relative-Frequency

0  0.2 0.4 0.6 0.8 1  
-0.1

-0.05

0

0.05

0.1

p

p (
)
p

0  0.2 0.4 0.6 0.8 1  
-0.1 

-0.05

0    

0.05 

0.1  
U

E

S

L

p

p (
)
p

A B

FIGURE 2 | Opposing effects predicted by two influential lines of theories. The

predicted deviation of the subjective from objective relative-frequency,

π (p) − p, is plotted as a function of the objective relative-frequency, p, and

compared across the four distribution conditions (U, E, S, L, color coded). (A)

Adaptation-level theory (Helson, 1947). The π (p) is assumed to reflect the

difference between the p and a reference point known as “adaptation-level”,

which shifts with the average value of the distribution. Thus, π (p) is repelled

away from the concentrated areas of p: compared to the U condition, there is

an overall overestimation for the S condition, and an overall underestimation

for the L condition; there is no difference between the U and E conditions (the

interleaved dashed lines), since the two have the same adaptation-level. (B)

Judgment as Bayesian inference (Jazayeri and Shadlen, 2010). The subjective

relative-frequency, π (p), is assumed to be a posterior estimate that integrates

the percept with the prior distribution of the objective relative-frequency. Thus,

π (p) is attracted toward the concentrated areas of p: compared to the U

condition, there is less overestimation of small p’s and less underestimation of

large p’s for the E condition, an overall underestimation for the S condition,

and an overall overestimation for the L condition.

pixels, 60-Hz refresh rate). The display of stimuli and recording
of responses were controlled by the iMac computer using Matlab
and PsychToolbox-3 (Brainard, 1997; Pelli, 1997).

Stimuli on each trial were an array of black and white dots on
a gray background (Figure 1A). Dots were located randomly but
non-overlapped within a centered invisible circle that subtended
a visual angle of 10◦. Each dot subtended∼0.1◦.

Procedure and Design
The task was to judge the relative-frequency of the black (or
white) dots in the array of black and white dots. Half of the
participants judged for the black dots and the other half for the
white dots. Figure 1A shows the time course of a trial: Shortly
after the onset and offset of a fixation cross, an array of black
and white dots was presented for 1.5 s, followed by a horizontal
bar with tick marks from 0 to 100%. Participants were asked to
click on the bar to report their estimate of relative-frequency.
In particular, when they moved the mouse left and right, the
indicator on the bar (i.e., the boundary between the black and
white regions) moved accordingly. Participants confirmed their
estimates by left clicking the mouse, which terminated the trial.
There was no time limit for response.

The total number of dots in a display could be 200, 300,
. . . , 800, and the relative-frequency (denoted p) could be 0.01,
0.02, . . . , 0.99. There were four conditions as below, concerning
the distribution of p’s across trials (Figure 1B). The Uniform
condition refers to a uniform distribution of p on the range
of [0.01, 0.99]. In the Small condition, small p’s had a higher
density−50/99 of p’s were in the range of [0.01, 0.1]. In the Large

condition, large p’s had a higher density−50/99 of p’s were in the
range of [0.9, 0.99]. In the Extreme condition, there were 30/99 of
p’s on each end ([0.01, 0.1] or [0.9, 0.99]). Participants’ judgment
is denoted π

(

p
)

. What concerned us is how π
(

p
)

, as a function
of p, may differ between different distribution conditions.

Each participant only completed one distribution condition.
There were 693 trials, divided into 7 blocks of 99 trials. Each
participant also completed 35 practice trials prior to the formal
experiment. No feedback was given during the experiment.
Participants were encouraged to respond as accurate as they
could.

Simulation of Theoretical Predictions
Judgment as Bayesian Inference
One may apply the framework of Bayesian inference to model
the judgment of relative-frequency. The original percept, y, is
assumed to be disturbed by a Gaussian noise on the log-odds
scale:

Pr
(

λ
[

y
] ∣

∣p
)

∝ exp

(

−
(

λ
[

y
]

− λ
[

p
])2

2σ 2
noise

)

, (2)

where Pr denotes probability, p denotes the objective relative-
frequency, λ [·] denotes the log-odds transformation, and σnoise
is a free parameter. Transforming back into the probability scale,
we have:

Pr
(

y
∣

∣p
)

∝
exp

(

− (λ[y]−λ[p])2

2σ 2
noise

)

y
(

1− y
) . (3)

Suppose participants’ prior for a specific distribution condition is
the same as the true distribution θ

(

p
)

, which is defined separately
for the Uniform, Extreme, Small, and Large conditions as below:

θU
(

p
)

= 1

99
, p ∈ {0.01, 0.02, ..., 0.99} ,

θE
(

p
)

=







30
10 ·

1
99 , p ∈ {0.01, 0.02, ..., 0.1}

39
79 ·

1
99 , p ∈ {0.11, 0.12, ..., 0.89}

30
10 ·

1
99 , p ∈ {0.9, 0.91, ..., 0.99}

,

θS
(

p
)

=
{

50
10 ·

1
99 , p ∈ {0.01, 0.02, ..., 0.1}

49
89 ·

1
99 p ∈ {0.11, 0.12, ..., 0.99} , (4)

θL
(

p
)

=
{

49
89 ·

1
99 , p ∈ {0.01, 0.02, ..., 0.89}

50
10 ·

1
99 p ∈ {0.9, 0.91, ..., 0.99} .

According to Bayes’ theorem, for any q ∈ {0.01, 0.02, ..., 0.99},
given the percept y and the prior θ

(

q
)

, the posterior probability
of the stimulus being q is:

Pr
(

q
∣

∣y
)

∝ Pr
(

y
∣

∣q
)

θ
(

q
)

. (5)

Following Jazayeri and Shadlen (2010) Bayes Least-Square
model, we assumed that participants, in order to minimize the
mean square error, would use the expectation of the posterior
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distribution as their estimate for p. The estimate conditional on a
specific percept y is

πy =
∑

q

qPr
(

q
∣

∣y
)

. (6)

Given that the percept y itself is a random variable that cannot
be directly observed, we need to marginalize off y to obtain a
mapping from p to the final estimate π

(

p
)

:

π
(

p
)

=
∫

πy Pr
(

y
∣

∣p
)

dy. (7)

For Figure 2B, the parameter σnoise = 1.

Adaptation-Level Theory
The adaptation-level theory does not predict the inverted-S-
shaped distortion itself but predict how the distortion may
change with the context. In our simulation for the adaptation-
level theory, the π

(

p
)

is determined by the same equation as LLO
except for the inclusion of the adaptation level L:

λ
[

π
(

p
)]

= γ
(

λ
[

p
]

− λ [L]
)

+ (1− γ ) λ
[

p0
]

, (8)

where, as in LLO, γ and p0 are free parameters, and λ [·] denotes
the log-odds transformation. The value of L shifts with the
distribution of p:

λ [L] = η
∑

p

θ
(

p
)

λ
[

p
]

, (9)

where η is a free parameter and θ
(

p
)

is defined for each
distribution condition as in Equation (4).

For Figure 2A, the parameters γ = 0.8, p0 = 0.5, η = 0.2 .

Measures of Distortion of
Relative-Frequency
Slope and Crossover Point Estimated From LLO
For each participant, we used LLO (Equation 1) to fit the reported
relative-frequency, π

(

p
)

and estimated the slope parameter γ

and the crossover point parameter p0.

Smoothed Distortion Curve and Non-parametric

Measures
The γ and p0 provide a model-based summary for a distortion
curve. Still, critical details of the curve may be lost due to
the limitation of the model. As a complementary analysis, we
smoothed the distortion curve for each participant and elicited
non-parametric measures of distortion from the smoothed curve.

In particular, we smoothed π
(

p
)

−p using a kernel regression
method with the commonly-used Nadaraya-Watson kernel
estimator (Nadaraya, 1964; Watson, 1964; Aljuhani and Al turk,
2014):

M̂h (x) =
∑m

i=1 K
( x−xi

h

)

yi
∑m

i=1 K
( x−xi

h

) , (10)

where xi and yi (i = 1, 2, ...,N) denote observed pairs of stimuli
and responses, M̂h (x) denotes the smoothed response at the

stimulus value x, and h is a parameter that controls the degree
of smoothing. The K (·) denotes the Gaussian kernel function

K (z) = 1√
2π

exp

(

− z2

2

)

. (11)

According to the optimal bandwidth selection algorithm by
Bowman and Azzalini (1997) the optimal values of h for different
conditions and participants ranged from 0.02 to 0.07. To avoid
possible artifacts for using different values of h, we set h to be
0.03. We computed the smoothed value of π

(

p
)

− p for p =
0.01, 0.02, ..., 0.99 based on the observations of all trials.

The curvature measure for the smoothed distortion curve was
defined as the area between the curve and the zero line, which
is inversely related to the γ in LLO. The elevation measure was
defined as the area of the curve above the zero line minus that
below the zero line, which is related to the p0 in LLO.

Estimating Sequential Effects
For each participant, we performed a linear regression to estimate
the possible dependence of the current response on the responses
of previous trials:

Rn = β0Sn +
m
∑

i=1

β−iRn−i + βC + ε, (12)

where Rn denotes the current response, Sn denotes the current
stimulus, Rn−i denotes the responses i-trial back, β0, β−i, βC are
free parameters, and ε ∼N

(

0, σ 2
noise

)

is a Gaussian random noise
term. Following LLO, we used responses and stimuli that are
both in the form of log-odds, that is, Sn = λ

[

pn
]

= log
pn

1−pn
,

Rn = λ
[

π
(

pn
)]

= log
π(pn)

1−π(pn)
.

It is possible that Rn is influenced by the previous responses
Rn−i as well as by the previous stimuli Sn−i. But because Rn−i and
Sn−i were highly correlated (Pearson’s r > 0.746, p < 0.001 for
all participants) and it was not our major interest to distinguish
between the influences of Rn−i and Sn−i, we did not include both
of them in the linear regression.

We did not assert that the sequential effects were really linear.
That is, the β−i in Equation (12) was not necessarily constant
across different stimuli. In a further analysis, we estimated the
value of β−1 as a function of pn and pn−1 using weighted least-
square regressions (WLS), denoted β̂WLS

−1 . For the regression

centered at a specific pair of
(

pn, pn−1

)

, where pn, pn−1 ∈
{0.01, 0.02, ..., 0.99}, the weight of trial j was determined by a
two-dimensional Gaussian kernel function:

wj(pn, pn−1)=
1

2πσ 2
k

exp

(

−
(pj − pn)

2 + (pj−1 − pn−1)
2

2σ 2
k

)

(13)
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where σk denotes the span of the Gaussian kernel and was set
to be 0.1, pj and pj−1 respectively denote the objective relative-
frequency of trial j and trial j−1, j = 2, 3, ...,N. If we define

W =











w2
1

(

pn, pn−1

)

0 · · · 0

0 w2
2

(

pn, pn−1

)

· · · 0
...

...
. . .

...

0 0 · · · w2
N

(

pn, pn−1

)











,(14)

X =











S2 R1 1
S3 R2 1
...

...
...

SN RN−1 1











, (15)

Y =











R2
R3
...

RN











, (16)

the coefficients of the weighted least-square regression at
(

pn, pn−1

)

could be estimated as:





β̂WLS
0

β̂WLS
−1

β̂WLS
C



 =
(

XTWX
)−1

XTWY . (17)

Modeling
We considered six models of π

(

p
)

, which are all based on LLO
but differ in two dimensions: whether to include trial-by-trial
adaptation and the type of sequential effects assumed. In the

equations for all models, Rn (= λ
[

π
(

pn
)]

= log
π(pn)

1−π(pn)
)

denotes the current response, Sn (= λ
[

pn
]

= log
pn

1−pn
) denotes

the current stimulus, Rn−i denotes the responses i-trial back, β0,
β−i, βC are free parameters, and ε ∼ N

(

0, σ 2
noise

)

is a Gaussian
random noise term.

The baseline model LLO, as defined earlier in Equation
(1), assumes no adaptation or sequential effects. To make its
notations consistent with the other five models, we formulize it
as:

Rn = β0Sn + βC + ε. (18)

The AL model is the same as the LLO model except for the
inclusion of an adaptation-level term:

Rn = β0 (Sn − Ln) + βC + ε, (19)

where Ln denotes the adaptation level on Trial n, which varies
from trial to trial following a delta-rule learning:

Ln = Ln−1 + κ (Sn−1 − Ln−1) , (20)

where κ is a free parameter for learning rate. We did not
formulize any model with a fixed adaptation-level term, because
a fixed additional term to Equation (19) would be assimilated into
βC and thus the model would reduce to LLO (Equation 18).

The LLO-L model is the LLO model with linear sequential
effects (see Equation 12). Similarly, the AL-L model is the AL
model with linear sequential effects:

Rn = β0 (Sn − Ln) +
m
∑

i=1

β−iRn−i + βC + ε. (21)

In models with linear sequential effects, the influence of Rn−i is
the same β−i for any Rn−i. The LLO-NL model is the LLO model
with non-linear sequential effects whose strength decreases with
the distance between Rn−i and Sn:

Rn = β0Sn +
m
∑

i=1

β−i (Rn−i − Sn) exp

[

− (Rn−i − Sn)
2

2ω2

]

+ βC + ε,

(22)

where ω is a free parameter. With Rn−i multiplied by

exp
[

− (Rn−i−Sn)
2

2ω2

]

, the ω determines how fast the influence of

Rn−i decreases with the distance between Rn−i and Sn.
Similarly, the AL-NL model is the AL model with non-linear

sequential effects:

Rn = β0 (Sn − Ln) +
m
∑

i=1

β−i (Rn−i − Sn) exp

[

− (Rn−i − Sn)
2

2ω2

]

+βC + ε. (23)

See Table 1 for a summary of models. The parameters of the
models were estimated usingmaximum likelihood estimates. The
MATLAB function fmincon (with the interior-point algorithm)
was used for searching for the parameters that minimized
negative log likelihood. To verify that we had found the global
minimum, we repeated the searching process for 300 times with
different starting points. Only Rn’s with trial number n ≥ 6 were
fitted so that the i in Rn−i could take values up to 5 (n− imust be
positive).

Efficient Coding Analysis
In any case the p-to-π

(

p
)

mappings were different between the
Uniform condition and the other three conditions, we would be
interested in whether the change of mapping across conditions
agrees with efficient coding. Given that the responses for the
judgment of relative-frequency are limited between 0 and 1,
the distribution of responses that would maximize information
transfer is a uniform distribution over the range of [0, 1]
(Simoncelli and Olshausen, 2001). For a specific condition
(Extreme, Small, or Large), if its p-to-π

(

p
)

mapping deviates
from that of the Uniform condition in the direction of efficient
coding, the distribution of its observed responses should be more
similar to the uniform distribution than the response distribution
predicted by the mapping of the Uniform condition is.

We quantified the dissimilarity between a specific response
distribution and the uniform distribution over [0, 1] using the
Kullback-Leibler (KL) divergence:

DKL

(

response
∥

∥ uniform
)

=
∑

i

fr (i) log
fr (i)

fu (i)
(24)
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TABLE 1 | Notations.

VARIABLES OR FUNCTIONS

p A generic value on the probability scale; objective probability or relative-frequency

λ (·) Log-odds function of probability or relative-frequency . λ (p) = log (p/ (1− p))

π (p) Subjective probability or relative-frequency

pn Objective probability or relative-frequency of Trial n

Sn Stimulus of Trial n in log-odds. Sn = λ (pn) = log (pn/(1− pn) )

Rn Response of Trial n in log-odds. Rn = λ
(

π [pn]
)

= log
(

π [pn]/
(

1− π [pn]
) )

MODEL ABBREVIATIONS

LLO Linear in log-odds model

AL Adaptation-level model

LLO-L Linear in log-odds model with linear sequential effects

LLO-NL Linear in log-odds model with non-linear sequential effects

AL-L Adaptation-level model with linear sequential effects

AL-NL Adaptation-level model with non-linear sequential effects

MODEL PARAMETERS

γ Slope of the linear transformation of log-odds

p0 Crossover point; controlling the intercept of the linear transformation of log-odds

β0 Coefficient for the Sn term

β−i Coefficient for the Rn−i term, i = 1,2,...,5

βC Coefficient for the constant term

σnoise Standard deviation of the Gaussian noise

κ Learning rate of the adaptation-level

ω Scope-of-influence parameter of LLO-NL or AL-NL; controlling how fast the sequential effect decreases with the difference between Rn−i and Sn

where fr (i) and fu (i) respectively denote the probability
of the response distribution and the probability of the
uniform distribution in the i-th bin, i = 1, 2, ..., 10, with
bins evenly divided between 0 and 1. We collapsed across
trials from all 16 participants of a specific condition to
obtain the observed response distribution of the condition.
For each condition, we simulated the response distribution
predicted by the mapping of the Uniform condition (U-
mapping) as follows. For the stimulus of each trial, a
virtual response was generated by randomly choosing one
response from the observed responses of the Uniform condition
that were associated with an identical stimulus. The virtual
responses for all trials formed the U-mapping predicted
distribution. We repeated the simulation to generate 1,000,000
U-mapping predicted response distributions. For conditions
other than the Uniform condition, efficient coding implies that
DKL

(

observed
∥

∥ uniform
)

− DKL

(

U-mapping
∥

∥ uniform
)

< 0.

RESULTS

We chose to use non-parametric statistical tests whenever
possible, because most of the variables tested were parameters
estimated from models (e.g., the γ and p0 estimated from LLO)
that were not necessarily normally distributed. Unless otherwise
stated, the significance level of 0.05 was used. The capital letter
P was used to denote the value of significance, in order to be
distinguished from the notation of relative-frequency (p).

Context Effects
We performed two lines of analyses to quantify how the
distortion of relative-frequency may adapt to the environmental
statistics. First, for each participant, we fitted the LLO model to
the reported relative frequency, π

(

p
)

, and estimated the slope γ

and the crossover point p0 for the distortion. The predictions of
the LLO model agreed well with the data (Figure 3A).

The mean γ and p0 for each distribution condition are
shown in Figure 3B. Participants in all conditions had mean
γ < 1, indicating the typical inverted-S-shaped distortion.
Based on the predictions of the adaption-level theory and
Bayesian inference, we were interested in whether the Uniform
and Extreme conditions differed in γ and whether the four
conditions differed in p0. For γ , a two-tailedWilcoxon rank sum
test showed that the difference between the Uniform condition
(median 0.82) and the Extreme condition (median 0.76) failed to
reach significance, Z = 1.26, P = 0.21. According to a Kruskal–
Wallis test (a non-parametric equivalent of one-way ANOVA) on
p0, different distribution conditions differed significantly in p0,
χ2 (3) = 12.44, P = 0.006, with post-hoc multiple comparisons
(Tukey-Kramer corrected) showing the Small condition (median
0.59) had a significantly larger p0 than the Large condition
(median 0.39).

In a second line of analysis, we obtained a smoothed curve of
π
(

p
)

− p (Figure 3C). We can see the Small condition had the
largest crossover point (i.e., the point the curve crosses the zero
line) among the distribution conditions, which agrees with the
findings about p0 above. Meanwhile, the Uniform condition was
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FIGURE 3 | Results: measures of probability distortion. U, E, S, L denote the

four distribution conditions. (A) π (p) − p as a function of p: data (xs) vs. LLO

model predictions (curves), averaged across participants for each condition.

Each x denotes the mean estimate for a bin of p, with bin size of 0.05. (B)

Slope (γ ) and crossover point (p0) measures of probability distortion

estimated using the LLO model. The variability of the estimated mean γ and

p0 is visualized by their bootstrap resamples, in clouds of dots. (C) Smoothed

π (p) − p as a function of the objective relative-frequency (p). The π (p) − p

curve was first smoothed for each participant and then averaged across

participants for each distribution condition. Shadings denote 1 SE. (D)

Curvature and elevation measures of probability distortion derived from the

π (p) − p curve of (C) The curvature measure is defined as the area between

the curve and the zero line, which is inversely related to the γ in LLO. The

elevation measure is defined as the area of the curve above the zero line minus

that below the zero line, which is related to the p0 in LLO. The variability of the

estimated mean curvature and elevation is visualized by their bootstrap

resamples, in clouds of dots. The bootstrap procedure was as follows: for

each condition and each pair of parametric or non-parametric measures, we

randomly sampled with replacement for 16 times from the 16 participants and

computed the means of the estimated measures for the resampled

participants. This procedure was repeated for 500 times to generate the 500

resamples visualized in each cloud.

less curved (less deviated from the zero line) than the Extreme
condition.

To characterize the differences visible in the smoothed
distortion curve, we defined the curvature metric (the area
between the curve and the zero line) and the elevation metric
(the area of the curve above the zero line minus that below the
zero line) for each participant (Figure 3D). By definition, the
curvature is inversely related to γ for γ ≤ 1 and the elevation
is related to p0. We performed similar tests on the curvature and
elevation as we did for γ and p0. For the curvature, a two-tailed
Wilcoxon rank sum test showed that the Uniform condition
(median 0.050) had a significantly smaller curvature than the
Extreme condition (median 0.073), Z = −2.28, P = 0.023. This
difference was in the same direction as the insignificant trend

in γ . According to a Kruskal–Wallis test, different distribution
conditions differed significantly in the elevation, χ2 (3) = 10.18,
P = 0.017. Post-hoc multiple comparisons (Tukey-Kramer
corrected) showed that the Small condition had a significantly
larger elevation (median 0.025) than the Large condition (median
−0.011), which was consistent with the finding above that the
Small condition had a significantly larger p0 than the Large
condition.

In sum, we found that both the curvature and elevation of
the distortion were influenced by the statistical environment.
That the Small condition had a higher elevation than the Large
condition is in accordance with the prediction of the adaptation-
level theory (Figure 2A) but against that of Bayesian inference
(Figure 2B). In contrast, our finding that the Extreme condition
had a higher curvature than the Uniform condition could not be
explained by either theory. However, as we discuss later, it agrees
with the principle of efficient coding.

Sequential Effects
We used linear regressions to estimate the possible contribution
of the previous response (Rn−1) to the current response (Rn). For
each participant and distribution condition, we first regressed
Rn against Sn and Rn−1 (Equation 12, with m = 1) for all
trials and denoted the coefficient for Rn−1 as β−1. The median
β−1 for the Uniform, Extreme, Small, and Large conditions were
respectively 0.033, 0.019, 0.033, and 0.017, all significantly greater
than 0 (Two-tailedWilcoxon rank sum tests, P< 0.03), indicating
an attraction effect of previous response. When we extended
the regressors to the responses up to five trials back, only β−1

was significantly different from 0 (Figure 4A). Therefore, we
only considered the sequential effect up to one trial back in the
subsequent analysis.

But was the sequential effect really linear? To test this,
we estimated the β−1 as a function of pn and pn−1 using
weighted least-square regressions (see section Methods). A
linear sequential effect would imply a homogeneous regression
coefficient map, that is, the β−1would not change with the values
of pn−1 or pn. Instead, the estimated β−1 (i.e., β̂WLS

−1
) showed

a clear pattern of stimulus-dependence (Figure 4B): its value
decreased as the distance between pn and pn−1 increased. The
highest values of β̂WLS

−1
occurred on the diagonal line when pn

equaled pn−1.
This non-linear sequential effect could be well predicted by the

AL-NL model (Figure 4C, see Equation 23 for the model), which
assumes that the weight for the previous trial decreases with the
inter-trial distance in the form of a Gaussian function.

To quantify the similarity between data andmodel predictions
in the pattern of sequential effects, for each model we computed
the correlation (Pearson’s r) between the matrix of the mean
β̂WLS
−1

observed and that predicted by the model. There were high
correlations for models assuming non-linear sequential effects
(LLO-NL and AL-NL), but much lower correlations or even
negative correlations for models assuming linear (LLO-L and
AL-L) or none (LLO and AL) sequential effect (Table 2). In
sum, the modeling analysis provided converging evidence that
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FIGURE 4 | Results: sequential effects. For each participant, linear regression was performed to quantify the possible influence of the previous response on the

current response (Equation 12), and how this sequential effect—as quantified by the coefficient for the previous response, β−1—might depend on the value of p on

the current (pn) and previous trials (pn−1). (A) Sequential effects for more than one trial back. The estimated mean β−i across participants for the responses up to five

trials back is plotted for each distribution condition. Error bars denote 1 SE. Dots denote estimates for individual participants. (B) Sequential effects as a function of pn
and pn−1. The mean β̂WLS

−1
across participants is plotted separately for the four conditions. Note that the closer the pn−1 was to the pn, the larger the β̂WLS

−1
. (C)

AL-NL model’s predictions for sequential effects.

the sequential effect was non-linear and showed that the non-
linear form we assumed in the -NL models could well capture
the pattern of sequential effects in the data.

Modeling the Processes Underlying the
Context Effects
What trial-by-trial processes might underlie the context effects
of π

(

p
)

, given that participants were never explicitly informed
about the distribution of relative-frequencies? We modeled two

processes—trial-by-trial learning of adaptation-level and non-
linear sequential effect—and tested whether they contributed to
a better explanation of the observed π

(

p
)

. In particular, we
constructed six alternative models (see section Methods and
Table 1) to compare the assumption of dynamic adaptation-level
(“AL” models) with that of constant adaptation-level (“LLO”
models), and to compare the assumption of non-linear sequential
effect (“-NL” models) with that of linear (“-L” models) or none
(null-postfix models) sequential effect. All models were fitted to
each participant’s π

(

p
)

using maximum likelihood estimates.
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TABLE 2 | Pearson’s r between data and model predictions in the pattern of

sequential effects.

Condition LLO AL LLO-L AL-L LLO-NL AL-NL

Uniform −0.015 −0.048 −0.215 −0.217 0.773 0.668

Extreme −0.355 −0.174 −0.126 −0.318 0.723 0.588

Small −0.141 0.219 −0.367 0.120 0.709 0.666

Large 0.238 −0.046 0.137 0.041 0.577 0.657

Model Comparison
To compensate for the difference in number of parameters
between models, we computed the Akaike information criterion
corrected for small sample-size (AICc; Akaike, 1974; Hurvich
and Tsai, 1989),

AICc = −2 ln
(

L̂
)

+ 2k+
2k
(

k− 1
)

N − k− 1
, (25)

for each participant and each model as the metric for goodness-

of-fit, where ln
(

L̂
)

denotes the log likelihood maximized, k

denotes the number of parameters, and N denotes the number
of trials. The lower the AICc, the better the model fit.

The best model among the six models was the AL-NL model
for all distribution conditions except for the Extreme condition
(where the best was LLO-NL and the second best was AL-NL),
according to the AICc summed across participants (Figure 5).
A group-level Bayesian model selection (Stephan et al., 2009;
Rigoux et al., 2014) based on AICc suggested the same (see the
red dot in Figure 5 for the protected exceedance probability,
that is, the probability a specific model is better than all the
other models). We can also see that the models with non-
linear sequential effects outperformedmodels with linear or none
sequential effects, other things being the same. Except for the
Extreme condition, AL models fit better than LLO models. The
advantage of AL over LLO models was small in the Uniform
condition and even negative in the Extreme condition, probably
because the distribution of relative-frequency was centered at
p = 0.5 in these conditions, where the final adaptation-level
differed little from its initial value.

Estimated Parameters
The estimated parameters for the AL-NL model are shown in
Figure 6. The six parameters can be divided into four categories
(see section Methods and Table 1 for more details): the slope and
intercept parameters that belong to the original LLO model (β0,
βC), the learning rate of adaptation-level (κ ), the parameters
that control the non-linear sequential effect (β−1, ω ), and the
standard deviation of the noise term (σ ).

According to Kruskal–Wallis tests separately for each
parameter, different distribution conditions differed significantly
only in ω , χ2 (3) = 14.65, P = 0.0021. The value of ω controls
how fast the sequential effect decreases with the distance between
the previous response and the current stimulus. The larger the
ω , the slower the sequential effect decreases with distance. In

the limiting case of ω → ∞ , the sequential effect would be
stimulus-independent, equivalent to a linear sequential effect.

The median value of ω for the Uniform condition (1.296)
was the smallest among the four conditions, significantly smaller
than those of the Extreme condition (2.209) and Small condition
(1.989), and marginally significantly smaller than that of the
Large condition (1.890, P = 0.062), according to post-hoc
multiple comparisons (Tukey-Kramer corrected) following the
Kruskal–Wallis test. Why shouldω —the parameter that controls
how fast the sequential effect decreases with the difference
between adjacent trials—differ between conditions? We noticed
that the average distance between two adjacent trials in the
Uniform condition (1.936) was significantly smaller than those
of the other three conditions (2.945, 2.316, 2.317, respectively
for Extreme, Small, Large), according to a Kruskal–Wallis test
(χ2 (3) = 53.22, P < 0.001) and post-hoc multiple comparisons
(P < 0.001). It seems the choice of ω adapted to the average
between-trial distance of the environment or statistics alike.

DISCUSSION

Relative-frequency, similar to probability, is an abstract quantity
that does not rely on the physical energy of stimuli and requires
the involvement of higher cognition. It differs from many kinds
of abstract quantity such as numerosity and utility in that it
is naturally bounded between 0 and 1. Here we investigated
how the perception of visual relative-frequency may change with
the environmental statistics. As typical, the judgment π

(

p
)

was
distorted as an inverted-S-shaped curve of the objective relative-
frequency p. We found two context effects concerning the π

(

p
)

curve. The first one was about the elevation of the curve: The
lower the central tendency of the distribution of p, the greater
π
(

p
)

− p. This is consistent with the contrast effect widely
reported in the adaptation literature including that specially
for relative-frequency (Varey et al., 1990), as well as with the
prediction of the adaptation-level theory (Helson, 1947).

We also found a second context effect concerning the spread
of the stimuli: the more dispersed the distribution of p, the more
curved the inverted-S-shape of π

(

p
)

. Had π
(

p
)

not changed
across contexts, when there were more p’s on the two ends
as in the Extreme condition, there would be more π

(

p
)

’s on
the two ends as well. An increase in curvature in the Extreme
condition implies a change of p-to-π

(

p
)

mapping so that π
(

p
)

could be more evenly distributed between 0 and 1. Such effect
cannot be explained by the adaption-level theory, for which
adaptation equals to the adjustment of a single reference point.
What may be relevant is Parducci (1965) range-frequency theory
for categorical responses, where observers are supposed to adjust
their responses to balance the number of responses in each
category. However, the range-frequency theory is not directly
applicable, because the responses in our task were not categorical
but continuous.

The two context effects together suggest adaptations of
relative-frequency that go beyond the adjustment of a single
reference point. It echoes neurophysiological studies where
neurons adjust to both the central tendency and spread of the
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FIGURE 5 | Model comparison: AICc and protected exceedance probability. The assumptions of the models differed in two dimensions: (1) without adaptation (LLO)
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advantage over the other models.

stimulus distribution in utility (Kobayashi et al., 2010) as well as
in sensory responses (Dean et al., 2005). Such adaptations of p-
to-π

(

p
)

mappings are in the spirit of efficient coding (Attneave,
1954; Barlow, 1961; Simoncelli and Olshausen, 2001), to the
goal of maximizing the discrepancy between different stimuli. In
particular, we tested whether the response distribution observed
in a specific condition (Extreme, Small, or Large), compared with
that predicted by the mapping of the Uniform condition, was
closer to the optimal response distribution. Given the limited
range of responses in the task, the response distribution that
maximizes information transmission is a uniform distribution
over [0, 1] (Simoncelli and Olshausen, 2001). Figure 7 shows
that the response distributions of the Extreme, Small, and Large
conditions were significantly closer to the uniform distribution
than those predicted by the mapping of the Uniform condition
were (P < 0.0001). That is, if participants had used the same
p-to-π

(

p
)

in these conditions as in the Uniform condition, the
distribution of their responses would have been less optimal than
the observed, in the perspective of efficient coding.

According to Petzschner et al. (2015), Bayesian inference
provides a parsimonious explanation for the biases in magnitude

estimation for length (Laming, 1997), time (Jazayeri and Shadlen,
2010), distance, and angle (Petzschner and Glasauer, 2011).
One of the phenomena explained was the regression effect
(also known as regression-to-mean) that small magnitudes
are overestimated and large magnitudes underestimated. This
account may even apply to the inverted-S-shaped distortion
of probability and relative-frequency. Unfortunately, Bayesian
inference fails to predict either of the two context effects
we found when we manipulated the distribution of relative-
frequency systematically. That being said, it is still possible that
Bayesian inference may play a role, though non-dominant, in
the judgment of relative-frequency. As we discuss later, the non-
linear sequential effects probably reflect a compensation for
uncertainty that resembles Bayesian inference.

We went further to model how the context effects may
arise trial by trial and identified two trial-by-trial processes.
First, compared with a constant adaptation-level, a trial-by-
trial adjusted adaptation-level could better explain the observed
contrast effect in elevation. When the adaptation-level is updated
after each trial as a weighted average of the previous adaptation-
level and the current stimulus, the value of the adaptation-level
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would gradually approach the central tendency of the stimulus
distribution.

One mystery is the lack of adaptation in the Extreme
condition. We conjecture that it is partly due to the larger
distance between two adjacent trials in the condition (2.945)
than those of the other conditions (1.936, 2.316, 2.317). There is
evidence that adaptation may stop to work when the discrepancy
between trials are too large (Levitan et al., 2015). A second
possibility for the lack of adaptation concerns the bimodal
distribution of objective relative-frequencies used in the Extreme
condition. While adaptation for a unimodal distribution leads to
an adaptation level close to the mode of the distribution, similar
adaptation for a bimodal distribution may result in an adaptation
level falling between the two modes and thus representative of
neither mode. For this reason, the perceptual systemmay adopt a
different strategy for bimodal or multimodal distributions. These
possibilities need to be tested in the future.

Second, we found a non-linear sequential effect: the current
response was biased toward the response on the previous trial,
with the size of the bias well captured by a Derivative-of-Gaussian
(DoG) function of the inter-trial distance. Sequential effects had
been widely reported in perceptual and cognitive tasks (Fründ
et al., 2014), which can be rationalized in the framework of
Bayesian inference as ways of compensating for sensorimotor
uncertainty (Körding and Wolpert, 2004; Jazayeri and Shadlen,
2010; Petzschner and Glasauer, 2011; Cicchini et al., 2012; Raviv

et al., 2012). If the percept for the current trial were independent
of those of the precedent trials in random noises, combining
the current percept with previous responses appropriately would
allow one to achieve a less varied response than using the
current percept alone. In practice, the weight for a precedent
trial was often modeled as a constant so that the response would
be a linear combination of the current percept and previous
responses. However, it is recently found in the perception of
orientation (Fischer andWhitney, 2014) that the weight received
by a precedent trial is not a constant; instead, it decreases with the
distance between the current and precedent trial in the feature
space. In discovering so, Fischer and Whitney (2014) plotted the
judgment error of the current trial as a function of the orientation
difference between the previous and current stimuli and obtained
a telling DoG-shaped curve that implies decreasing weight for
the precedent trial as the inter-trial distance increases. Similar
DoG-shaped curves and thus non-linear sequential effects have
been identified in the perception of motion (Alais et al., 2017)
and facial identity (Liberman et al., 2014) and in visual working
memory of colors (Makovski and Jiang, 2008).

Except for numerosity (Cicchini et al., 2014), all the non-
sequential effects found so far were for circularly distributed
stimuli via plotting judgment error as a function of inter-trial
distance. The same visualization can hardly qualify as a test for
the linearity of sequential effects in non-circularly distributed
stimuli (though see Figure 4 for clues of non-linearity), because
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different stimuli would be associated with different distributions
of inter-trial distances. In the case of relative-frequency, the
difficulty of visualization was increased by the systematic
biases inherent in the judgment. We used modeling methods
to overcome the difficulty: We constructed models assuming
different forms of sequential effects, among which models with
non-linear sequential effect fit best to the observed π

(

p
)

.
The non-linear sequential effects were conjectured to be

a mechanism that helps to keep visual stability across space
and time (Fischer and Whitney, 2014). Our finding of similar
non-linear sequential effects in the abstract quantity relative-
frequency, along with that of numerosity (Cicchini et al.,
2014), suggests a more general mechanism than the previously

theorized. In fact, it implies a bifurcation: when the previous
stimulus is close to the current stimulus, the current response
merges the two; when the previous stimulus is far from the
current stimulus, the current response simply dismisses the
previous one. Such bifurcations have been widely observed in
the group decision of animals (Couzin, 2009), in the competition
between neurons (Nichols and Newsome, 2002), and in the
integration of information from multiple sensory modalities
(Wozny et al., 2010).

We found that the non-linear sequential effect could adapt to
the distribution of p. In the winning AL-NL (or LLO-NL) model,
the strength of the bias toward the previous trial is controlled by
two parameters: a scaling factor β−1 and the scope-of-influence
ω . The value ofω but not β−1 had significant differences between
different distribution conditions.

It would be interesting to see what factors may influence the
non-linear sequential effects. Fischer and Whitney (2014) found
that the size of the non-linear sequential effects in the perception
of orientation would decrease with the spatial or temporal
proximity between trials. Whether the non-linear sequential
effects found in the judgment of relative-frequency follow
similar principles is unknown. Whether non-linear sequential
effects may give way to linear sequential effects under certain
circumstances is also an empirical question.

To conclude, human judgment of relative-frequency adapts to
the environmental statistics trial by trial toward the direction of
maximizing the discrepancy between different stimuli. Between
trials there are also non-linear sequential effects that may help to
reduce the variability of response.
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